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Abstract: Optimal Pl-settings are derived for first-order with delay processes for specified levels
of robustness (M,-value) and compared with the simple SIMC-rule. Optimality (performance)
is defined in terms of the integrated absolute error (IAE) of the output for combined step
changes in setpoints and input disturbances. With SIMC, the robustness level is adjusted by
changing the tuning parameter 7., and the SIMC-rule was found to give surprisingly good
setting with almost Pareto-optimal performance. The exception is a pure time delay processes
where the SIMC-rule gives a pure integral controller with somewhat sluggish response. A simple
modification to improve on this, is to increase the time constant in the rule by one third of the

time delay.
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1. INTRODUCTION

In this paper, we consider a PI-controller
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where K. is the controller gain and 77 the integral time,
applied to a first order with time delay process
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where k is the process gain, 71 is the process time constant
and 6 is the time delay.

The SIMC method for PID controller tuning (Skogestad,
2003) has already found wide industrial usage. The SIMC-
rules are analytically derived, and from a first or second
order process model we can easily find the PI- and PID-
controller setting, respectively. For a first-order process,

d dys

Fig. 1. Block diagram of feedback control system. We may
treat an output disturbance (dys) as a special case of
setpoint change (ys)

the SIMC PI-settings are
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71 = min{ry,4(7. + 6)} (4)

The SIMC Pl-rule has one tuning parameter 7. which
can be used to trade off between performance (“tight”
control) and robustness (“smooth” control). The rule was
originally derived mainly with simplicity in mind, and
although it was mentioned in the original paper that these
are "probably the best simple PID tuning in the world”,
one may want to ask the questions: How good is the SIMC
PI-rule? Can it be improved? Is the recommended value
T. = 0 a good default value for the tuning parameter 7.7

To study this, we need to compare the SIMC PI perfor-
mance with the “optimal” PI-controller for a process on
the from (2). However, “optimality” is generally difficult
to define as there are many issues to consider, including:

Output performance
Robustness

Input usage

Noise sensitivity

This may be considered a multiobjective optimization
problem, but fortunately the trade-off space has only one
main dimension, namely high versus low controller gain.
High controller gain favours good output performance,
whereas low controller gain favours the three other ob-
jectives listed above. We can then simplify and say that
there are two main objectives:

(1) Output performance
(2) Robustness, input usage and noise sensitivity

The idea is then to compare the SIMC controller, with 7.
as a parameter, with the “Pareto-optimal” PI-controller.
Pareto-optimality applies to multiobjective problems, and



means that no further improvement can be made in
objective 1 without sacrificing objective 2. We still need
to define more exactly objectives 1 and 2.

Towards the end the paper, we consider how to find a
first-order with delay model, which is required for the
SIMC tuning rule. It can be difficult to obtain open-loop
responses for model approximation and Shamsuzzoha and
Skogestad (2010) presented a new method for using closed-
loop data for tuning. We will modify this method to obtain
a first-order with time delay model.

2. EVALUATION OF PERFORMANCE AND
ROBUSTNESS

2.1 Output performance

Output performance (objective 1) is related to the differ-
ence between the measurement y(¢) and its setpoint ys
(Figure 1), and may be quantified in many different ways.
For example, for a setpoint change, we might consider
the rise time, overshoot and settling time. However, to
quantify the output performance in terms of a single scalar,
we choose to use the integrated absolute error:

IAE = / () — ws(0)]dt

The TAE-value depends on which disturbance or setpoint
change we consider. We choose to consider a weighted
average of IAE for a step change in the load disturbance
d (IAE,;) and setpoint ys (IAE,,):

IAE,s(c) IAEq(c) (5)
IAE,, TAE]
Importantly, the weighted cost J is independent of the

process gain k, the disturbance and setpoint magnitudes,
and of the unit used for time.

J(e) =05 [

The weighting factors IAE7, and IAEj are for reference
PI-controllers, which for the given process are IAE-optimal
for a setpoint change and a disturbance, respectively. To
get robust reference controllers, they are required to have
M = 1.59. Values for IAE] & and TAE, are given for four
different processes in Table 1. We could have used the truly
optimal TAE-value as the reference (without the restriction
M, = 1.59), but this would not have changed the results
much because the IAE-value is anyway quite close to its
minimum at M; = 1.59. Note that two different optimal
Pl-controllers are used to obtain the two reference values,
whereas a single controller ¢ is used to find IAE,(c) and
TAE4(c) when evaluating the weighted TAE-cost J(c).

It may be argued that a two-degree of freedom controller
with a setpoint filter may be used to improve the response
for setpoints, but note that a setpoint change is equivalent
to an output disturbance (dys in Figure 1) which is not
affected by the filter. Thus, both setpoint changes (output
disturbances) and input disturbances should be included
when evaluating performance, and to get a good balance
between the two, we weigh them about equally by using
the cost in (5).

2.2 Robustness, input usage and noise sensitivity

There are many ways to quantify objective 2 related to the
benefits of low gain. Robustness my be quantified in terms

of sensitivity peak (M;), complementarity sensitivity peak
(M), gain margin (GM), phase margin (PM), allowable
time delay error (49/6), etc. Input usage may also be
quantified in many ways, but we have found total variation
(TV) to be a good measure:
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The noise sensitivity on the outputs (y) may be quantified
by the complimentary sensitivity peak (M;). However,
even more important is usually the noise sensitivity on the
inputs (u), which for a PI-controller is closely related to the
magnitude of the controller gain, K., which should be low
to have small noise sensitivity. This issue is not considered
in this paper, partly because the noise frequency and
magnitude shows large variation from case to case.

In this paper, we choose to quantify all the issues related
to objective 2 in terms of the sensitivity peak, M:

1
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which is the peak of the sensitivity function in the fre-
quency domain. In robustness terms, M, is the inverse
of the closest distance between the critical point -1 and
the loop transfer function gc in the Nyquist plot. For
robustness, a small value of M, is desired, and generally
My should not exceed 2. A typical “good” value is about
1.6, and notice that My < 1.6 guarantees GM > 2.67 and
PM > 36.4° (Rivera et al., 1986). As shown later, the M,-
value is also closely related to TV, at least for process and
controllers used in this paper.

M, = max
w

3. OPTIMAL PI TUNING

For a given first order with time delay process, the Pareto-
optimal curve with PI control is generated by solving the
the following optimization problem:

For a given set of M, values My = {1.1,...,1.59, ..
solve:

'73}7

) B IAE,s(c) IAEq4(c)
min J(c)=0.5 TAEC, TAE;
st. Mg=m

for all m € M.

In Table 1, the resulting optimal PI-controllers and J-
values are given for My = 1.59 for four processes;

e pure time delay (71/6 = 0),
e small time constant (11 /6 = 1),
e intermediate time constant (71/0 = 8),
e integrating (71/6 = o).
We note that J = 1 for a time delay process, because

there is no trade-off between disturbances and setpoints
for this process, and because the reference controllers have
M = 1.59. For the integrating process, the optimal value
of J is 1.50, mainly because we have to sacrifice setpoint
performance.

3.1 Optimal trade-off between robustness and performance

Figure 2 shows the optimal output response (left) and
corresponding input usage (right) for three values of M
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Fig. 2. Optimal PI control of first-order plus delay processes: Output response (left) and input usage (right) for My = 1.20
(top), Ms = 1.59 (middle) and M, = 2.00 (bottom). Setpoint change at t = 0 and (input) disturbance at ¢ = 20.
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and performance (J) with PI control for four processes




Table 1. Optimal Pl-controllers (Ms = 1.59) and corresponding IAE-values for four processes.

Setpoint Input disturbance Optimal combined (minimize .J)
Process K. I IAE;S K. I IAEg K. I IAEys IAE4 J My
e~ *® 0.20 0.32  1.609 0.20 0.32 1.609 0.20 0.32 1.607 1.607 1 1.59
2_7_; 0.54 1.10 2.073 0.50 1.0 2.016 0.54 1.10 2.087 2.038 1.00 1.59
863:1 4.0 8 2.171 334 37 1134 3.46 4.0 3.096 1.164 1.23 1.59
e ® 0.50 oo 2.174 0.40 5.8 15.09 0.41 6.3 4.318 15.38 1.50 1.59

TIAEys is for a unit setpoint change. IAE, is for a unit input disturbance.

(1.2, 1.59, and 2) for the four processes. We see that as Mj
is increased and control gets more aggressive, the output
performance is improved whereas the input usage gets
worse.
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Fig. 4. Optimal PI control of first-order plus delay process:
Magnitude of sensitivity function for three M -values

Figure 4 shows the corresponding optimal sensitivity func-
tion, S = 1/(1 + gc), for the process g(s) = SS—{HeXp(—s)
for the same three M -values. We see how tightening the
control (increasing M) gives better performance (lower
|S]) at lower frequencies, but worse performance at higher
frequencies. The worst-case peak for |S| is the M -value
which occurs approximately at the frequency correspond-
ing to the time delay, w = 1/9p = 1 (the unit depends on
the unit used for time).

The main results are given in Figure 3 which gives the
Pareto-optimal trade-off between performance (J) and
robustness (M;) (blue curve) for the four processes. Note
that we have a real trade-off between performance (J)
and robustness (M) only when there is a negative slope
between these variables, which is in the left region in
the figures in Figure 3. Here, we have to compromise
between performance and robustness. We never want to
be in the region with a zero or positive slope (marked as
“uninteresting”), because if we move to the right in this
region, both performance and robustness deteriorate at
the same time. The minimum point on the curve (dashed
black line) represents the maximum M,-value that we
would want to use. This maximum M;-value varies from
about 1.9 for the delay-dominant process to about 2.7 for

the integrating process. M,-values higher than this give
oscillating responses which increases the IAE-value.

8.2 Correlation between robustness and input usage

As mentioned earlier, we chose to not consider the input
usage when finding the optimal controller. One reason is
that this is not necessary, because the input usage in terms
of total variation (TV) correlates very well with M. This
is shown in Figure 5 for the four processes. We see that
when My increases, TV increases for both setpoint change
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Fig. 5. Optimal PI control of first-order plus delay process:
Input usage (TV) for setpoint change (upper) and
input disturbance (lower) as a function of M.



and input disturbance. Because the system is subjected to
unit step changes in setpoint and input disturbance, the
minimum TV-value is 1, except for the integrating process
71/0 = oo where the minimum is 0. Also note the TV-value
is relatively constant around 1 at low M,-values. It is only
when M is so large that the system starts oscillating, that
TV starts increasing. This illustrates that M, is better to
use as a robustness measure (objective 2) than TV.

3.8 Optimal PI tuning parameters

The optimal PI controller settings are plotted in Figures 7
and 8 as a function of the scaled process time constant
71/0 for five values of Ms. The SIMC-settings for the
choice 7. =6 are included as a reference (dashed line).
The are two main regions: delay dominant (71/6 < 5)
and lag dominant (71/6 > 5). For lag-dominant processes
(Figure 4), the scaled controller gain K.kf#/7; approaches
a constant value as we increase the lag 7 /6. For example,
for M, = 1.59, the optimal value is K.k0/m; = 0.4145 for
71/60 = 50, and 0.4100 for 71 /60 = co (integrating process).
The same can be observed for the integral time, which
approaches 7; = 6.36 for an integrating process. Note that
when M increases (less robustness), the controller gain
increases and the integral time decrease.

The delay-dominant region (71/6 < 5) is shown more
clearly in Figure 8. Interestingly, the optimal integral
time is almost independent of the robustness (M) in
this region. We note that 71 =~ 7 (dashed line) for
small values of 71 /60; more exactly for 71 /6 between about
1 and 3. This agrees with the well-known IMC rule
(Rivera et al., 1986). However, 77 does not approach zero
(integrating controller) as 71 /6 becomes small. Rather, for
a pure time delay processes (11/0 = 0), the integral time is
approximately 6/3 for all M-values of interest (which from
Figure 3 is M, < 1.9). On the other hand, the controller
gain (K.) increases with Mj also for small values of 1 /8).
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Fig. 6. Optimal PI control of first-order plus delay process:
Setpoint and disturbance performance as a function
of process time constant 7,/6 (Ms = 1.59).

3.4 Output disturbance (setpoint) versus input disturbance
trade-off

As already noted from Table 1, the optimal controller that
minimizes the cost J(c) in (5), puts more emphasis on the
(input) disturbance rejection (IAE4) than on the setpoint
tracking (IAE,), especially for larger values of 7 /6. This
is further illustrated in Figure 6, where we see that for 71 /6
less than about 5, the optimal controller puts about equal
weight on setpoints and disturbances, whereas for larger
values it mostly emphasizes disturbances. For example, for
an integrating process, we find IAE;/TIAES = 1.02 (close
to optimal for input disturbance), whereas IAE, s /IAEP . =
1.99 (twice the optimal). This is a bit surprising since we
have equal weights on the two terms in the cost function.
The reason is that the TAE-optimal controller for setpoint
(TAE(;) has no integral action (77 = c0), whereas integral
action is required to bring the process back to its setpoint
in reasonable time when there are input disturbances, and
this consideration dominates when want to find a single
optimal controller. Even if we increase the emphasis on
setpoints, we find a similar pattern. For example, if we use
a cost function with only a small weight (1%) on input
disturbances,

TIAE,;(c) TAE4(c)

IAE, TIAE]

we find for an integrating process the optimal settings
K, = 0462 and 77 = 12.260, with IAE;/IAES = 1.72 and
IAE,s /TAE], = 1.91. We notice that there is only a minor
improvement in setpoint performance (IAE,; decreases
about 4%), whereas disturbance rejection is much worse
(TIAE, increases about 69%). The conclusion is this that

we may put emphasis mainly on input disturbances when
tuning PI controllers.

J(c) = |0.99 +0.01

4. EVALUATION OF THE SIMC PI TUNING RULE

The SIMC Pl-settings (Skogestad, 2003) for a first-order
with delay model are
o 1 T1
Tk Te+ 0

77 = min{m,4(7. + 0)}
where the desired first-order closed-loop time constant 7. is
the only tuning parameter. For a “fast and robust” setting,
Te = 0 is recommended. The corresponding SIMC tuning

parameters for 7. = 6 are given for the four processes in
Table 2.

C

4.1 Effect of the tuning parameter 7. on robustness

By adjusting the tuning parameter 7., we can shift the
trade-off between performance and robustness. In par-
ticular, M, decreases (more robust) as we increase Te.
In Figure 10, we show for four processes, the effect of
changing 7./6 in the region from 0 to 3, on (1) M,-value,
(2) gain margin, (3) phase margin and (4) allowed time
delay error. We note that there is a direct correlation
between 7. and all four robustness measures, and the
correlation does not depend strongly on the value of 71 /6.
In particular, this applies to the gain margin (GM), which
shows an almost one-to-one (and linear) relationship with
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Table 2. SIMC PI-controllers (7. = #) and corresponding J- and Mg-values for four processes.

SIMC PI (7 = 6)

Improved SIMC PI (7. = 0)

Process K. T IAEys IAEq J K. TI IAEys IAEq J My

e s 0 0™ 2.17 2.17 1.35 1.59 0.17 0.33 1.95 1.95 1.21 1.45

2_7_; 0.5 1 2.17 2.04 1.15 1.59 0.67 1.33 1.99 1.99 1.09 1.69

865181 4 8 2.17 2.00 1.38 1.59 4.17 8 2.14 1.92 1.34 1.62

e;S 0.5 8 3.92 16 1.43 1.70 0.5 8 3.92 16 1.43 1.70

) Pure integral controller with K1 = K./71 = 0.5.

Te. Thus, for the SIMC-rule, specifying 7, is essentially the AO T 1 L= GM -1 8
same as specifying GM. This linear relationship can be ) (Z + ) T o (8)

proved mathematically for processes with relatively small
values of 71, such that the SIMC-rule gives 71 = 71 (see
Appendix)

GMz%(%Jrl) (7)

and Figure 10 shows that this relationship holds well also
for an integrating processes (where the SIMC-rule gives
77 =4(1c + 0)).

For relatively small values of 71, such that 77 = 7, a
similar linear relationship also exists for the allowable time
delay error (see Appendix):

However, Figure 10 shows that this relationship does not
quite hold for an integrating process where the allowable
time delay error is somewhat smaller.

4.2 Optimality of the SIMC-rule

Figure 9 compares the Pareto-optimal performance (blue
curve) with the SIMC PI-controller (green curve) for the
four processes. The curve for the SIMC controller was
generated by varying the tuning parameter 7. from a
large to a small value. The controllers corresponding to
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Fig. 9. Evaluation of optimality of SIMC PI tuning rule for four processes.

the choices 7. = 1.50 (smooth tuning), 7. = 6 (default
value) and 7. = 0.50 (more aggressive tuning) are shown
by circles. Except for the pure time delay process, the
differences between the IAE-values (J) for SIMC (green
curve) and optimal (blue curve) are within 10%, which
shows that the SIMC Pl-rules are close to optimal. In
other words, by adjusting 7. we can generate the optimal
controller for a given desired robustness.

Another important observation from Figure 9 is that
the SIMC default recommendation 7. = 6 for “tight”
control (as given by middle of the three circles) in all
cases is located in the desired trade-off region with a
negative slope, well before we reach the minimum. Also,
the recommended choice gives a fairly constant M,-value
in the region 1.59 to 1.7. From this we conclude that,
except for the time delay process, there is little room to
improve on the SIMC Pl-rule, at least when performance
and robustness are as defined above (J and Mj).

4.8 Evaluation of SIMC-rule for integral time

When comparing the optimal Pl-settings with the SIMC-
rule for an integrating process, it seems that the integral
time given by the SIMC-rule is a bit too large (Figure
7, bottom). Specifically, for an integrating process and
7. = 0 (Ms = 1.70), the SIMC-rule gives 7;/6 = 8
whereas the optimal value for M, = 1.70 is about 5.5. This
indicates that in terms of the trade-off between setpoint
and disturbance performance, the SIMC-rule is putting
somewhat too much emphasis on setpoints. There has

also been claims that the SIMC-rule results in sluggish
disturbance rejection for integrating processes (Haugen,
2010; Di Ruscio, 2010). To be able to shift the trade-
off between setpoint and disturbance performance, one
may introduce an extra parameter in the tuning rule
(Alcantara et al., 2010). Haugen (2010) suggested to
introduce an extra servo/regulator trade-off parameter ¢
in the expression for the integral time,

(9)

where ¢ = 4 gives the original SIMC-rule. However,
introducing an extra parameter adds complexity and from
Figure 9 the potential benefit does not seem sufficiently
large. Nevertheless, one may consider choosing another
(lower) fixed value for ¢, and Haugen (2010) suggests using
¢ = 2 to improve the input disturbance performance. In
Figure 11 we check the optimality of choosing ¢ = 2
(dashed pink curve) for an integrating process. We find
indeed that performance (J) is improved compared to
SIMC (¢ = 4) if we keep 7. = 6. However, robustness
is worse (with M, close to 2, whereas SIMC gives 1.7).
More importantly, by decreasing 7. for SIMC so that
we get the same robustness, the performance with SIMC
(¢ = 4) is even better than with ¢ = 2. In fact, we see
that the SIMC performance curve (green) is closer to the
Pareto-optimal curve in the entire optimal performance
region (where J is small). In summary, we find that
the value ¢ = 4 in the original SIMC-rule provides a
well-balanced servo/regulator trade-off, and to improve
disturbance performance for an integrating process we

71 = min(7y, ¢(7. + 0))
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recommended decreasing the tuning constant 7./6, say to
around 0.7, rather than changing the value of c.

5. IMPROVED SIMC-RULE

From the results in Figure 9, the main “problem” with
the SIMC-rule is for pure time delay processes, where
we see that the TAE-value (J) for the SIMC controller
is about 40% higher than the minimum with the same
robustness (My). This is further illustrated by the closed-
loop simulations in Figure 13. We see that the response
with the SIMC PI-controller (denoted SIMC-original in
the figure), although being nice and smooth, is somewhat
sluggish initially, because it is actually a pure I-controller
with K, = 0,771 = 0 and K; = K./71 = 0.5. On the other
hand, the IAE-optimal PI-controller (with minimum J for
M, = 1.59) has K. about 0.2 and 77 about 0.32 (and
K; =0.62).

Fortunately, as already observed, the optimal PI-controller
for a pure time delay process (green line in Figure 3),
has an almost fixed integral time of approximately 6/3 for
all values of My between 1.4 and 1.7. (Figure 8, bottom)
Based on this fact, we propose a simple change to the
SIMC-rule, namely to replace 7 by 71 + 6/3 in the rule
(PI control), which markedly improved the responses for a
pure time delay process. It is important that the change is
simple because “simplicity” was one of the main objectives
when originally deriving the SIMC-rule.

A similar change, but with /2 rather than /3, was origi-
nally proposed by Rivera et al. (1986) for their “improved
PI” tuning rule, and the effectiveness of this modification is
also clear from the paper of Foley et al. (2005). However, as
seen in Figure 13, the response with this IMC PI controller
also settles rather slowly towards the setpoint, indicating
that the integral time 6/2 is too large. The conclusion is
that we recommend to replace 71 by 71 +6/3 in the SIMC-
rule to get the improved SIMC-rule:
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Fig. 12. Evaluation of optimality of improved SIMC PI tuning rule for four processes.

17 —|—g
c—= 7 1
kT1.+80 (10)
77 = min{m + 274(% +0)} (11)

The improvement of this rule for a pure time delay
processes is clear from the red curves in Figures 12 (upper
left) and 13; for small M,-values the improved SIMC-
controller is almost identical to the Pareto-optimal, which
confirms that 77 = 0/3 is close to optimal for a pure time
delay process. One disadvantage with the improved rule,
which is not considered in this analysis, is that the larger
controller gain (K.) makes the input and output responses
more sensitive to measurement noise.

For the process with a small time constant (71/60 = 1),
the improved SIMC-rule (red curve in upper right plot in
Figure 12) is slightly better than the “original” SIMC-rule
(green curve) for higher Mg-values (where we get better
performance) but slightly worse for lower Mj-values. For
the two processes with a large time constant (r1/6 = 8
and 71 /0 = 00) there is, as expected, almost no difference
between the original and improved SIMC-rules.

6. OBTAINING THE MODEL FROM A
CLOSED-LOOP SETPOINT EXPERIMENT

In some cases, open-loop responses may be difficult to
obtain, and using closed-loop data may be more effective.
The most famous closed-loop experiment is the Ziegler-
Nichols where the system is brought to sustained oscilla-

12+ i
[ SiMePr
(improved, N P

;'?0.8771:033) IMC-PI (7;=0.5) |

5

=]

=8

= SIMC-PI (original, 7, = 0)

O 06 B
04l 1
0.2 —

0 . . . . . . .
0 1 2 3 4 5 6 7 8 9 10

Time, ¢t

Fig. 13. Closed-loop setpoint responses for pure time delay
process (# = 1,k = 1,1 = 0) with Pl-control.
e IMC PI: K, = 029, 77 = 05 (K; = Ke¢/m1 = 0.58).
e SIMC PI original (7. = 0): K. = 0,71 = 0(K; = 0.5).
e SIMC PI improved (7. = 0.610) K. = 0.207,71 =
0.333(K1 = 0.62). All three controllers have the same robust-
ness (Ms = 1.59). For a pure time delay process, the setpoint
and disturbance responses are identical, and the input and
output are identical.

tions by use of a P-only controller. One disadvantage with
the method is that the system is brought to its instability



Fig. 14. Extracting information from closed-loop setpoint
response with P-only controller.

limit. Another disadvantage is that it does not work for
a simple second-order process. Finally, only two pieces
of information are used (the controller gain K, and the
ultimate period P,), so the method cannot possibly work
on a wide range of first-order plus delay processes, which
we know are described by three parameters (k, 71, 6).

Yuwana and Seborg (1982), and more recently Shamsuz-
zoha and Skogestad (2010), proposed a modification to
the Ziegler-Nichols closed-loop experiment, which does not
suffer from these three disadvantages. Instead of bringing
the system to its limit of stability, one uses a P-controller
with a gain that is about half this value, such that the
resulting overshoot (D) to a step change in the setpoint is
about 30% (that is, D is about 0.3).

We here describe the procedure proposed by Shamsuzzoha
and Skogestad (2010). The system should be at steady-
state initially, that is, before the setpoint change is applied.
Then, from the closed-loop setpoint response one obtains
the following parameters (see Figure 14):

Controller gain used in experiment, K.

Setpoint change, Ays

Time from setpoint change to reach first (maximum)
peak, t,

o Corresponding maximum output change, Ay,

e Output change at first undershoot, Ay,

This seems to be the information that is most easy (and
robust) to observe directly, without having to record and
analyse all the data before finding the parameters. Also
note that one may stop the experiment already at the first
undershoot.

The undershoot Ay, is used to estimate the steady-
state output change (at infinite time) (Shamsuzzoha and
Skogestad, 2010),

Ayoo = 0.45(Ay, + Ayy,) (12)

Alternatively, if one has time to wait for the experiment
to settle, one may record Ay, instead of Ay,,.

From this information one computes the relative overshoot
and the absolute value of the relative steady-state offset,
defined by:

Ayp—Ayoo .

e Overshoot, D = Ny

e Steady-state offset, B = ‘A@’Zf&‘.
Yoo

Shamsuzzoha and Skogestad (2010) use this information to
obtain directly the PI settings. Alternatively, we here pro-
pose a two-step procedure, where we first from K., D, B
and t, obtain estimates for the parameters in a first-order
plus delay model. We compute the parameters

A=1.152D? - 1.607D + 1
r=2A/B
and obtain the following first-order plus delay model (see
Appendix for derivation):

k=1/(K.B) (13)
0 = t, - (0.309 4 0.209¢ 1) (14)
mn=rb (15)

These values may subsequently be used with any tuning
method, for example, the SIMC PI-rule. The closed-loop
method may also be used for an unstable process, provided
it can be approximated reasonably well by a stable first-
order process. The extension to unstable processes is the
reason for taking the absolute value when obtaining the
steady-state offset B.

S h . .
o6 Original 7" order, gg
1%t order closed-loop, g,

Output, y

041

0.2 —0.35+1)(0.085+1)

_ (
go(s) = (2s+1)(1s+1)(0.45+1)(0.25+1)(0.055+1)%

gel(s) = .;"1"14 exp (—1.67s)

Fig. 15. Closed-loop setpoint identification method: Com-
parison of resulting open-loop step response with true
model.

Example. For the process (Skogestad, 2003)
(—=0.35+1)(0.08s + 1)
25+ 1)(1s 4+ 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3
the closed-loop setpoint response with P-only controller
with gain K9 = 1.5 is shown in Figure 14. The following
data is obtained from the closed-loop response
K =1.5,Ay, =1,Ay, =0.79,t, = 4.4, Ay, = 0.54

and we compute
Ayso = 0.5985, D = 0.32, B = 0.67, A = 0.6038,r = 1.80
which using (13) - (15) gives the following first-order with
delay model approrimation,

k=0.994,0 =1.67,7, = 3.00 (16)

This gives a good approximation of the open-loop step
response, as can seen by comparing the curves for go
(blue) and go (green) in Figure 15. The approximation

go(s) = (



18 certainly not the best possible, but it should be noted
that the objective is to use the model for tuning, and
the resulting difference in the tuning, and thus closed-loop
response, may be smaller than it appears by comparing the
open-loop responses.

7. CONCLUSION

Comparing the performance of the SIMC-rule with the
optimal for a given robustness (M, value) shows that
the SIMC-rule give settings close to the Pareto-optimal
(Figure 9). This means that the room for improving the
SIMC PI-rule is limited, at least for the first-order plus
delay processes considered in this paper, and with a good
trade-off between rejecting input and output (setpoint)
disturbances.

The tuning parameter 7. should be chosen to get the
desired trade-off between fast response (small IAE) on
the one side, and smooth input usage and robustness
(small Mj) on the other side. The recommended choice
Te = 0 gives robust (M, about 1.6 to 1.7) and somewhat
conservative settings when compared with most other
tuning rules. If it is desirable to get faster control one may
consider reducing 7. to about /2 (see Figure 9). More
commonly, one may want to have “smoother” control with
T. > 0 and a smaller controller gain K.

To improve the performance for delay-dominant processes,
one may replace 7, by 71 —l—% and use the “improved” SIMC
PI-rule in (10)—(11).
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Appendix A. DERIVATION OF THE RELATIONSHIP
BETWEEN 7 AND GM, PM AND, A8/0

This derivation applies to processes with a relatively small
time constant, or specifically for processes where 7 <
4(1. + 0), such that we according the SIMC-rule have
71 = 71. Consider a fist order model,

k
— —9
g ﬁ$+1wm s)

and a PI controller
= KC (T[S + 1>
TIS
with the SIMC PI-settings
1 T1

KC = —7; =
ko460
This gives the loop transfer function

T1

gc = e exp(—0s)

(t.+ 6
The magnitude and phase angles are

. 1
lge(jw)| = m

Lge(jw) = —g — wb

The gain crossover frequency is

jgeljud] = g =1 we= —
c(jwe)| = =1 w.=
g We (Te + 0)we SRR
and phase crossover frequency is
T T 1
A ] = —— — 9 = —1TT: = — . —
ge(jwiso) 5 w180 T W180 59
The gain margin is then
1 T (Te
o LTy
lge(jwiso)l 2\0
The phase margin is
m 0
PM = /gc(j =——

and the allowable time delay error is
Al PM 1 7T
av_ .,:f4£1)4:GM—1

0 we 0 2 (9 +




Appendix B. ESTIMATION OF PARAMETERS 7
AND 6 FROM CLOSED-LOOP STEP RESPONSE.

Shamsuzzoha and Skogestad (2010) discuss at the end of
their paper a two-step closed-loop procedure, where the
first step is to use closed-loop data and some expressions
to obtain the parameters k, 7 and 6. We use this approach
but have modified the expressions. Our expression for k
in (13) is given by their equation (35) by noting that
B = |(1 — b)/b] where b = Ays/Ays. However, our
expressions for § and 7 in (14)-(15) differ somewhat from
their equations (36) and (37). The reason is that their
equations (36) and (37) are not consistent in terms of the
time delay estimate, because the expression for 7 in (36)
is based on 6 = 0.43t,, whereas (37) uses 6 = 0.305¢,.
To correct for this, we first note from (19) in their paper
(noting that 7, = 77 for the delay-dominant case), that 7
and 0 are related by
=10

where = 2A/B, which is our expression in (15). Here,
Shamsuzzoha and Skogestad (2010) recommend to use
0 = 0.44t, for 11 < 80 and 6 = 0.305¢, for 7 > 86.
However, to get better accuracy and a smooth transition,
we fitted simulation data for 6/t, as a function of 7 /6 for
a wide range of processes with an overshoot of 0.3, and
obtained the correlation (Grimholt, 2010)

0 =t, - (0.309 4 0.209¢0-61(m1/9))

as given in (14). Note here that (0.309 4+ 0.209¢~0-61(71/9))
is 0.518 for r = 71 /0 = 0, and 0.309 for r = cc.



