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Abstract: Optimal PID-settings are found for first-order with delay processes for specified levels
of robustness (MS-value) and compared with an extended SIMC-rule. Optimality (performance)
is defined in terms of the integrated absolute error (IAE) for combined step changes in load
output and input disturbances. The SIMC-rules gives a PI-controller for first order systems and
no recommendation is given for tuning the derivative part. We propose an extended SIMC-rule
where the the time delay is counteracted by introducing derivative action with τD = θ/3. The
modification was found to give surprisingly good settings with near Pareto-optimal performance.
However, to obtain the improvement over PI control τc should be reduced to about half of the
recommended value τc = θ.
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1. INTRODUCTION

We investigate optimal tunings for a first-order plus time
delay process,

G(s) =
k

(τ1s+ 1)
· e−θs (1)

where k is the process gain, τ1 is the time constants, and
θ is the time delay. We consider only the cascade form
PID-controller

K(s) = Kc

(
τIs+ 1

τIs

)
(τDs+ 1) (2)

where Kc, τI and τD are the controller gain, integral time
and derivative time. For other notation, see Figure 1.

In practice, the measurement is usually filtered. For exam-
ple, by use of the controller

K(s) = Kc

(
τIs+ 1

τIs

)(
τDs+ 1

τF s+ 1

)
(3)

Measurement filtering is not included as a part of our tun-
ing problem. For a PID-controller, the measurement filter
time constant (τF ) should anyway be selected such that
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Fig. 1. Block diagram of the feedback control system. We
may treat an output disturbance (do) as a special case
of setpoint change (ys)

the controller characteristics is not significantly changed,
which for the controller (3) implies τF < τD/3, approxi-
mately. If the filter time constant (τF ) is selected to en-
hance performance, then we are no longer talking about a
PID-controller, but a PIDF-controller with four adjustable
parameters.

Optimality is generally difficult to define as there are many
issues to consider, including:

• Output performance
• Robustness
• Input usage
• Noise sensitivity

This may be considered a multiobjective optimization
problem, but we consider only the main dimension of the
trade-off space, namely high versus low controller gain.
High controller gain favours good output performance,
whereas low controller gain favours the three other ob-
jectives listed above. We can then simplify and say that
there are two main objectives:

(1) Output performance
(2) Robustness, input usage and noise sensitivity

Pareto-optimality applies to multiobjective problems, and
means that no further improvement can be made in
objective 1 without sacrificing objective 2. The idea is
then to find the Pareto-optimal controller, and compare
with the SIMC-tuning.

The SIMC method for PID-controller tuning (Skogestad,
2003) has already found wide industrial usage. The SIMC-
rules are analytically derived, and from a first or second
order process model we can easily find PI- and PID-
controller settings, respectively. The rules has one tuning
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Table 1. Optimal PID-controllers (Ms = 1.59) and corresponding IAE-values for four processes.

Output disturbance Input disturbance Optimal combined (minimize J)

Process Kc τI τD IAE◦
do Kc τI τD IAE◦

di Kc τI τD IAEdo IAEdi J Ms

e−s 0.20 0.32 0 1.61 0.20 0.32 0 1.61 0.20 0.32 0 1.61 1.61 1 1.59
e−s

s+1
0.43 0.62 0.62 1.56 0.42 0.59 0.59 1.46 0.42 0.61 0.61 1.57 1.47 1.01 1.59

e−s

8s+1
4.97 8.00 0.32 1.61 3.75 1.56 0.59 0.58 4.35 2.52 0.48 2.35 0.63 1.27 1.59

e−s

s
0.62 ∞ 0.32 1.61 0.51 2.33 0.53 6.37 0.54 3.24 0.48 3.02 6.81 1.47 1.59

IAEdo and IAEdi are for a unit step load change on output (y) and input (u), respectively.

parameter, the closed-loop time constant τc, which can be
used to trade off between performance (“tight” control)
and robustness (“smooth” control).

In a previous paper, we studied the optimal PI-controller
on the same first order process (1), where we compared
the SIMC-tuned PI-controller with the “optimal” PI-
controller (Grimholt and Skogestad, 2012).

The SIMC rules do not cover the tuning of PID-controllers
(τD) for first-order processes. In this work, we propose an
extension of SIMC, and we find that adding τD = θ/3
gives a close-to optimal controller.

This paper is structured as follows. In Section 2 the perfor-
mance/robustness trade-off is quantified. The optimization
problem is defined in Section 3. Optimal PI- and PID-
controllers are presented in Section 4, and the extended
SIMC-rule is presented and analysed in Section 5.

2. EVALUATION OF PERFORMANCE AND
ROBUSTNESS

2.1 Performance

Performance (objective 1) is related to the difference
between the measurement y(t) and the setpoint ys (Figure
1). To quantify performance in terms of a single scalar, we
choose the integrated absolute error:

IAE =

∫ ∞
0

|y(t)− ys(t)| dt (4)

Actually, in this paper we do not consider setpoint changes
(ys). That is, ys may be considered constant. Hoverer, we
do consider output disturbances do, which for the so-called
one-degree of freedom controller in Figure 1 (where there
is no filter on ys) is equivalent to a setpoint change.

To balance the servo/regulatory trade-off we choose a
weighted average of IAE for a step input load disturbance
di and IAE for a step output load disturbance do:

J(K) = 0.5

[
IAEdo(K)

IAE◦do
+

IAEdi(K)

IAE◦di

]
(5)

The weighting factors IAE◦di and IAE◦do are for a reference
controller, which for the given process is the IAE-optimal
PID-controller for a step load change on input and out-
put, respectively. Note that two different controllers are
used to obtain the reference IAE-values, whereas a single
controller K is used to find IAEdi(K) and IAEdo(K) when
evaluating the IAE-cost J(K).

To ensure robust reference controllers, they are required
to have MS = 1.59 1 , and the resulting weighting factors
are given for four processes in Table 1.

It may be argued that a two-degree of freedom controller
with a setpoint filter can be used to enhance setpoint
performance, and thus we only need to consider input
disturbances. But note that although a step load change
on the output do, as mentioned, is equivalent to a setpoint
step-change ys for the setup in Figure 1, it is not affected
by the setpoint filter. In summary, we consider disturbance
rejection which, can only be handled by the feedback
controllerK (Figure 1). The optimal controller will depend
on the specific disturbance model, and we chose to consider
disturbances at the plant output (do) and plant input (di).
To get a good balance, we weigh the both equally as given
in (5).

2.2 Robustness

Robustness (objective 2) is in this paper quantified with
the peak of the sensitivity function MS . The sensitivity
function is defined as,

S =
1

1 +GK
(6)

and the MS-value is defined as its peak, or mathematically

MS = max
ω
|S(jω)| = ‖S‖∞ (7)

where ‖ · ‖∞ is the H∞-norm. In the frequency domain
(Nyquist plot), MS is the inverse of the closest distance
between the critical point -1 and the loop transfer function
GK. For robustness, a small MS value is desired, and
generally MS should not exceed 2. A typical “good” value
is about 1.6, and notice that MS < 1.6 guarantees GM
> 2.67 and PM > 36.4◦ (Rivera et al., 1986).

3. PROBLEM FORMULATION

For a given first order plus time delay process, the Pareto-
optimal curve for PI or PID control is generated by solving
the the following optimization problem:

Given the set of MS-values MS = {1.1, . . . , 3},
solve for all m ∈MS :

1 For those that are curious about the origin of this specific value
MS = 1.59, it is the resulting MS-value for a SIMC tuned PI-

controller with τc = θ on the process G = e−s

s+1
.
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min
K

J(K) = 0.5

[
IAEdo(K)

IAE◦do
+

IAEdi(K)

IAE◦di

]
s.t. MS = m

where K(s) is a PI- or a PID-controller.

The problem was in practice solved by gradient-free op-
timization on the τI and τD parameter, where in each
iteration the gain Kc was adjusted such that the MS

constraint was fulfilled.

4. OPTIMAL PID-CONTROL ON FIRST ORDER
PLUS TIME DELAY PROCESS

Four different first-order processes have been investigated,

• Pure time delay (τ1/θ = 0)
• Small time constant (τ1/θ = 1)
• Intermediate time constant (τ1/θ = 8)
• Integrating (τ1/θ =∞)

In the pure time delay case, small additional poles
1/(0.0001s + 1) were added to make the loop transfer
function proper.

In Table 1, the resulting optimal PID-controllers and J-
values are given for MS = 1.59 for four processes; We
note that J = 1 for a time delay process, because there
is no trade-off between disturbances for this process, and
because the reference controllers have MS = 1.59. For
the other cases we have J > 1 because there is a trade-
off between input and output disturbances rejection. For
example, for the integrating process, the optimal value
of J is 1.47, mainly because we have to sacrifice output
disturbance rejection.

4.1 Pareto-optimal controllers

A Pareto-optimal curve depicts the trade-off between
two conflicting objectives. In our case, this is the trade-
off between performance (J) and robustness (Ms). The
Pareto-optimal curves for PI- and PID-control for the four
processes are shown in Figure 3. Notice that we have only
a real trade-off when there is a negative slope between the
variables (left side of the plots). Here we have to decide
on a compromise between the two objectives. That is, if
we improve one objective, the other deteriorates. We never
want to be in a region with zero or positive slope (right
side of the plots), because we can both improve robustness
and performance by just moving to the left. Therefore, the
minimum point in the cure represent the largest MS value
we would like to use. The deterioration in performance
at large MS-values is cased by oscillating response which
increases the IAE.

For a pure time delay process there is no advantage to add
derivative action, and it is optimal to use simple PI-control
(Figure 3, top right). As the time constant increases the
benefit of using derivative action increases. For integrating
processes, using derivative action improves performance a

substantial 42% at MS = 1.59, compared to optimal PI-
control.

4.2 Optimal PID tuning parameters

The optimal tuning can be divided into to main regions:
delay dominant (τ1/θ < 5) and lag dominant (τ1/θ >
5). For the lag dominant processes, the scaled controller
gain approaches the constant vale Kckθ/τ1 = 0.54 for
MS = 1.59 (Figure 2, top). The same can be observed
for integral time and derivative time which approaches to
τIθ = 3.24 and τDθ = 0.48 at the same MS-value (Figure
2, bottom). Though, the integral time converges slower.
For increasing MS-values (lower robustness), the optimal
controller gain increases and the optimal integral time
decreases. Interestingly, the optimal derivative time seems
to be independent to the selected robustness, resulting in
τDθ = 0.48.

The delay dominated region can be subdivided into two
additional regions based on the controller: Equal controller
zeros (τI = τD), from approximately τ1/θ < 2, and two
distinctive controllers zeros, from approximately τ1/θ > 2.
Setting the derivative time equal to the integral time
concurs with the recommendation of Ziegler and Nichols
(1942). However, this is only for a small range of first-order
processes. In the upper part of the delay dominated region
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Fig. 2. Pareto-optimal PID settings for five given MS-

values (robustness) for the process G(s) = ke−θs

τ1s+1 . For

reference τI = τ1 is also plotted (dashed line).
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Fig. 3. Pareto-optimal trade-off between robustness (MS) and performance (J) for Pareto-optimal PI- and PID-control
for four processes

the integral time is close to the process time constant
(indicated by dashed line) which is in agreement with the
well-known IMC rule (Rivera et al., 1986).

4.3 Parallel (ideal) vs. cascade PID-controller

So far we have found the optimal cascade PID-controller
in (2). A more general PID-controller is the parallel, or
ideal, PID-controller,

Kparallel = K ′c

(
1 +

1

τ ′Is
+ τ ′Ds

)
(8)

The cascade controller can always be translated into the
parallel form by

K ′c = Kcf, τ ′I = τIf, τ ′D = τD/f (9)

where f = 1 + τD/τI . The more general parallel form (8)
can not be translated to the cascade form (2) if it has
complex zeros.

The difference between the two forms are minor in our
case. For three of the processes the cascade form is optimal.
Only the small time constant process (τ1/θ = 1) had
optimal parallel PID-controller with complex zeros. The
optimal cascade controller (2) for this process is on the
boarder between real an complex with to coinciding real
zeros, τI = τD. This compares to τ ′I = 4τ ′D for the parallel

form controller (8). However, as seen from Figure 5, the
difference between the cascade and the parallel controller
very small even for this process.
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Fig. 5. Pareto-optimal cascade PID-control (blue line) and

parallel PID-control (red line) on G(s) = e−s
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Fig. 4. Pareto-optimal trade-off between robustness (MS) and performance (J) for optimal and SIMC PI- and PID-
control for four processe. SIMC-PI and SIMC-PID have Kc and τI given by (10) (but the value of τc are not the
the same for a given MS), and SIMC-PID have τD = θ/3.

Table 2. Tuning for optimal and SIMC PID-controllers with Ms = 1.59 on four processes.

Optimal PID SIMC PID

Process Kc τI τD KcτD J MS Kc τI τD KcτD J τc MS

e−s 0.20 0.32 0 – 1.00 1.59 0 0 0.33? – 1.02 0.62 1.59
e−s

s+1
0.43 0.61 0.61 0.26 1.01 1.59 0.62 1 0.33 0.21 1.08 0.61 1.59

e−s

8s+1
4.39 2.54 0.48 2.11 1.26 1.59 5.92 6.5 0.33 1.64 1.69 0.63 1.59

e−s

s
0.55 3.25 0.48 0.26 1.45 1.59 0.59 6.81 0.33 0.20 1.86 0.70 1.59

(?) Gives a ID-controller with I = Kc/τI = 1/(τc + θ). This is the same as a PI-controller.

4.4 Input usage

Input usage is an important aspect for control. From
Figure 1 we have

u = −Tdi +KS (do + n)

Thus, input usage is decided by the two transfer functions:
T (from input disturbance) and KS (from output distur-
bance and noise).The input disturbances are not a problem
because T is bound by MT which is low for our cases.

KS has a peak at the intermediate frequencies which is
approximately |KS(jω)| ≈ KcMS (Åström and Hägglund,
2006). Thus, with a given MS-values, the optimal PID-

controllers, which has a higher controller gain Kc, requires
more input usage than the optimal PI-controller.

The product KcτD is good indication for input usage in
the high frequency range, where |KS(jω)| ≈ KcτDω. For
PID-controllers without a measurement filter (τF ), the
|KS| peak goes to infinity, ‖KS‖∞ = ∞. Therefore, it
is important to filter out the high frequency noise, and the
resulting peak will depend heavily on the selected filter.
It is important that the selected filter do not influence
controller performance and robustness in a significant way.
If so, we have a PIDF-controller where also the filter
constant should be considered a degree of freedom in the
optimization problem. For this reason we recommend that
the filter constant should be selected no larger than τD/3.
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5. EXTENDED SIMC FOR PID-CONTROL OF
FIRST-ORDER PROCESSES WITH TIME DELAY

The SIMC PI-settings for the first-order plus delay process
(1) are

Kc =
1

k

τ1
τc + θ

, τI = min{τ1, 4(τc + θ)} (10)

where the desired first-order closed-loop time constant τc is
the only tuning parameter. For a “fast and robust” setting,
τc = θ is recommended.

The trade-off curve for the SIMC controllers was generated
by varying the tuning parameter τc from a large to a small
value. The controllers corresponding to the three specific
choices

• τc = 1.5θ (smooth tuning)
• τc = θ (default value)
• τc = 0.5θ (more aggressive tuning)

are shown by circles. Except for the pure time delay
process, the differences in performance (J) between SIMC-
PI and optimal-PI are within 10%, which shows that
the SIMC PI-rules are close to optimal (Figure 4). In
other words, by adjusting τc we can generate the optimal
controller for a given desired robustness (Grimholt and
Skogestad, 2012).

When considering PID-control, is commonly proposed to
introduce derivative action to improve performance for
processes with time delay, e.g. τD = 0.5θ (Rivera et al.,
1986). Based on analytical derivations and simulations,
Skogestad (2003) found that adding τD = 0.5θ only
marginally improved performance for load input distur-
bances compared with PI. However, it was also noted
that introducing derivative action improved the robustness
margins somewhat. Because of the small improvements,
increased complexity and increased noise sensitivity, Sko-
gestad recommend to not use derivative action to coun-
teract time delay for first-order plus delay processes. This
is somewhat conflicting to what we have found so far
where performance substantially improved by introducing
derivative action (Figure 3).

We have found that setting the derivative time to:

τD = θ/3 (11)

with the SIMC-rules gives good performance, as is dis-
cussed in more detail bellow. This value τD = θ/3 follows
from our previous results (Grimholt and Skogestad, 2012)
where we derived an “improved” SIMC PI-rule.

As Skogestad claimed, when comparing SIMC-PID with
SIMC-PI when choosing τc = θ, the robustness is some-
what improved, but performance is only marginally im-
proved (middle circle, Figure 4). For the integrating pro-
cess, the MS is improved from 1.70 for PI to 1.46 for PID,
but there is only a 6% increase in performance. However,
due to this added robustness for PID, we can reduce τc
and significantly improve performance for a given MS-
value (36% increase for the integrating process) compared
to the original PI-controller. A good value for the tuning
constant would be τc = 0.5θ, as it give approximately the
same robustness as the SIMC PI-rules with τc = θ.

Compared with the optimal PID-controller, the SIMC
PID-controller have higher input usage in the intermediate

frequency range and less input usage in the high frequency
range, as can be seen from the higher Kc and lower KcτD
values (Table 2).

The SIMC-rules settles slower than the optimal controller
for both input and output disturbances (Figure 6). How-
ever, it is usually the maximum deviation that is of main
concern in the industry. The SIMC-rule have roughly equal
peak deviation for input disturbance, and a smaller peak
deviation for output disturbances compared with the op-
timal. By using SIMC-PID the peak deviation is reduced
by 26% for input disturbances, compared with SIMC-PI.
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