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What is gain scheduling control?

e Originally a control scheme to counteract nonlinear variations in the
steady-state process gain.

¢ A gain scheduling controller is a parameterized set of linear controllers. In
operation the parameter is measured (available) and the controller in ac-
tion is scheduled (determined) according to the parameter.

e Example: Time varying PID control, where K, (may also include 7; and
T,) is tabulated as a function of operating conditions.
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Steps in the design of a gain scheduling controller.

1) Select a set of stationary operating points.

2) Design the controllers for each operating point.
3) Design the scheduling algorithm.

4) Implement the parameter-scheduled controller.



Motivating examples

1) Gain scheduling control of airplane. Scheduling variables:

- Mach number (static air pressure and velocity).
- Altitude (height above sea level).

2) Application of gain scheduling control in chemical process control.






Adaptive controller?
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Classification of gain-scheduling control techniques

Adam Lagerberg (1996):

e Linear Parameter Varying (LPV) approach.
e Gain-scheduling with Linear Fractional Transformations (LFT).

e Extended linearization and linearization families.

e The D-method.
In this presentation only the LFT and the LPV approaches will be considered.
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Three types of “linear” system descriptions

e Linear Time Invariant (LTI) systems

-l o)l

e Linear Parameter Varying (LPV) systems
I N T:E EEM I
€ Clp) D(p)] Ld

e Linear Time Varying (LTV) systems

Note, a LPV-system becomes a:

1) LTI-system for p = const. and
2) LTV-system for p = p(t) (along a time-varying trajectory).
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Parameter-Dependent Systems

Parameter-Dependent linear plants:
L_[an e e
e = |Cilp) Dulp) Dip)| |d
TL *QMAMV UNHAMV UMMAML TL
The parameter p:

e is time-varying, i.e. p(t),
e takes values in a compact set P, and

e there are known bounds on p (which may, or may not be exploited)

For control:

e The time variations are not known in advance.

e The parameter values p(t) are measured in real-time with sensors.
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Parameter-Dependent Control of Parameter-Dependent Systems

d

YO

e

Y
N

=
i)
A

e Parameter dependent controller K, which processes
e band

- p nonlinearly.

Optimizing closed-loop performance with respect to parameter variations.
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Parameter-Dependent Systems

Consider two types of Parameter-Dependent systems
e Linear Parameter Varying (LPV), and
e Linear Fractional Transformation (LFT) models.

Distinctions:

e The allowable dependence that the state-space data has on the parameters.

e To which extent information about the parameter’s variation are exploited in
the analysis.

e The different techniques used to analyze the systems.
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Obvious questions

Natural to look into:
o Stability.
e Stabilizability and Detectability.
e Parameterization of all stabilizing controllers.
e Choosing K to optimize performance.
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Parameter-Dependent Systems: Stability Definitions

Two facts:

e Stability of LTV-system is well characterized.

¢ When evaluating along a allowable trajectory, the P-D system becomes an
LTV-system.

LFT and LPV systems, two different approaches to stability tests:

e LFT-systems: Structured Small-Gain theorems.
e LPV-systems: Parameter dependent Lyapunov functions,
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P-D Systems: Stabilizability and Detectability

e Stabilizability of (A(p), B(p)): If there exists a P-D state-feedback u(t) =
F(p)z(t), such that:

z = A(p)z(t) + B(p)F(p)x(t)

is stable for all possible parameters p € P

e Detectability of (C(p), A(p)): If there exists a P-D output to state-feedback
L(p), such that:

z = A(p)z(t) + L(p)C(p)x(t)

is stable for all possible parameters p € P

16



P-D Systems: All “stabilizing” controllers

Extension to Youla parameterization (Wei Min Lu) for
e the two types of P-D systems
e controlled by their corresponding P-D controllers
e with their corresponding notations on P-D stability.
Output feedback stabilization:

e Given an open-loop P-D system
A(p) mj :

x
E - LC(p) D(p)] Lu
e There exists a finite-dimensional P-D controller that stabilizes the system
if and only if
1) The pair (A(p), B(p)) is stabilizable.
2) The pair (C(p), A(p)) is detectable.
e Usual observer structure.

17



LFT-systems

Given:
e Real-parameters ¢; which may be repeated, give rise to:

ﬁ@% Wmﬁ@%ﬁ@#&mi..i%%&mxw : %s € %W C %mx.m“ S 2 A%H“MM“...“m%v

e System matrix M, partitioned according to:

z(t) Myy Miz Moo
e(t) | = | Mag Mss Mos
a(t) My Mso Mss

z(t)
d(t)
B(t)
The LFT-system G/ is described by Ga = F;(M, A(t)), with state-space equations

B R vl R bl RS GG RO Ry

>4

"

Ga

e where allowable piecewise continues A(t) trajectories satisfy:

A(t) =Ds(6(t)), 16;(t)] <1, however, no restrictions on é.
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LFT-systems graphically

N L d e
T M | H
g a I6] o
A(t) = A(t) =
B(0)] _ (1) o
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where H (s) is the 2-input, 2-output transfer function such that
)= Ly a1
83 B meA%v mwwAmv Q
H(s) given in terms of M is

H(s) = T&ﬁ ii + T&B

Mazo  Mas
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Robust stability condition for LFT-systems with linear time varying A
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The LFT-system (M, S) is stable if
1) M, is Hurwitz, and
2) there exists a constant matrix Z = Z% > 0 of the form

Z =diag{Z1,2s,...,Zs}, with Z; e R¥*%_ such that

satisfying
<1

oo

:NWEMN¢

If so, small-gain argument verify exponential stability of

HQV == ﬁipH + imeQXN — immDvavluiupwHQv
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Scaled bounded real lemma (Gahinet and Apkarian, 1994)

With Hyy = C(sI — A)~'B + D, then the following two statements are equivalent:
1) A is stable and there exists a constant diagonal matrix Z = Z% > 0

Z =diag{Z1,Zs,...,Z¢}, with Z, e R*, suchthat ZA(t) =A(t)Z

satisfying

:NWEMN¢ <1

oo

2) There exist solutions X = X > 0and Z = Z% > 0 (with the structure give

above) such that
ATX + XA XB (C*

BT X —7Z DT | <0
C D -z
is fulfilled.
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LFT closed-loop system

Define time invariant rational transfer function matrix P(s)

ﬁo&; TU: Py P13 [B

e| = | P11 Paa Pos d
TL TUE P3s P33 Lu

Interconnection of » and y, i.e. u = Ks(d)y

@%A%V < A mwﬁm me mww
.| G| Dss D D
3 oY Ps) 5 | Dss Ds1 Dso
) N C1 | Dis D11 Dy
J P - | Oy | Das Do Dao
U Y
Kr(d) -

The time varying parameters ¢ enter both in Dg(d) and in K (J)!
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LFT closed-loop system
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LFT closed-loop system

Closed-loop transfer function is:
T(P,K,Ds(9),Dr(0)) = Fi(Fu(P,Ds(6)), Fi(K,Dr(d))

Define P,(s) Pa(s)

0 0 0O L7
Py P2 P13 0
P>y Pz Pz O
P31 Pz Pz O
| 3] 1. 0 0 0 0 | o

®
Il
o O o O
f Qa T

Qr

Closed-loop transfer function in terms of P,(s):
T(P.,K,Ds(8),Dr(8)) = Fu Am%@@yim? ﬁwwav e @C

e The LFT gain-scheduling control problem can be treated as a classical robust

performance control problem with the nominal plant P,, and with repeated real
: Dr(d
block uncertainty ~ =(9)

@m@L.
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Induced L, performance in LFT-systems

e Given a time varying vector e(t), then the Ly-norm of e(t) is defined by

le(lls 2 { [ letr)?ar} <o

e Induced L, performance metric

N[

|Gadl,
mMax maX ——————
allowables d : d 7 ; 2

l.e. take the “worst-case” (over all parameter trajectories) induced L gain
from d to e.

e Induced L, performance bound v (L»-gain)

\o mﬂﬁ.vmﬁ.v%. < Qw\o &HAJ&AJ%. VT >0
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LFT synthesis problem

Given:
1) Finite dimensional linear P Ds(9)

_ - I6] a
Al| Bs B1 Bo
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P(s) =

v
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2) Vector of integers S describing the T
plant’s parameter structure. Y u

Find (if possible): K
1) Finite dimensional linear K.

2) Vector of integers R, describing the
controller’'s parameter structure.

Y
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LFT synthesis setup

DQV € @%A%v
Let ZA denote the set of matrices such that for 7 € ZA sothat ZA = AZ
Let A'x and Ay be bases for the null spaces of

ﬁm\wﬁ NUWJM NUWJM Og and ﬁQw Dss Doy Og
Let X; € R%*si Y, € R%*% and define

NHQ@@%ANTNM“..JN%W and M\Hmﬁ@mﬁw\fw\wv...“w\ﬂw

then M“ Y € ZA.
Define

~ ﬁb& Dy ~
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LFT synthesis solution

The LFT gain-scheduling control problem is solvable with closed-loop performance
bound ~, if there exist matrices:

AN AN

Xo=XT eR™, Yo=Yl eR™, X=XTeZy and Y=Y7 € Z\

such that
CAXy + XoAT  XoOF Bi
Cy X roo D
Nx 120 7 0 I 1 Ny <0 (1)
R _ X 0
B B, |;o L-
|\wﬂu\o |_| M\okmw M\O\/mH QW ]
BTY, | Y| Dr
Ny Lo Tlo 1 11 Nx <0 2)
R . Y 0
C D _
G v e gl
X, I X I
0 >0 and ~| >0 3)
I Y, I Y
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LFT synthesis solution summary

Sufficient condition for existence of LFT-controller such that the closed loop system
has performance level < ~:

e if and only if there are matrices X = X7 > 0and Y = Y > 0 with structure
N”mﬁm@ﬁvﬂo“vﬂf...ukﬂw“ M\”mﬁ@mﬁw\ouw\f...“u\%wu

satisfying

>0

X; 1
AMI; (X,~7) <0, AMIy(Y,v) <0 and ~ ~

Iy
e ~-suboptimal controller of order £ if
rk(1 — XoYo) < k
Some comments:

e The linear matrix inequalities are finite dimensional.
¢ Robust numerical methods for solving the affine linear matrix inequalities exist.
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LFT-controller

Parameter dependent controller:

e R =&, i.e. the controller’s parameter structure is the same as the plant’s
parameter structure.

e The LTI part of the LFT controller K, is reconstructed from X and Y/, i.e. the
solutions to the affine matrix inequalities.

¢ Implementation:

Y u With ¢ given (measured):
K
- Kr(9) = Fi(K,DPr(9))
3 & u=Kg(d)y
Dr(d)

e The control action « is linear in y, nonlinear in o.
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LFT extensions and remarks

e Results on LFT synthesis derived independently by (Packard, 1997):

- Andy Packard, Greg Becker and Fen Wu, and
- Pierre Apkarian and Pascal Gahinet.
But note, similar ideas have been proposed by Lu and Doyle (1992,1995).
e The Small-Gain LFT test may be conservative due to the realness of the
parameters J.
¢ Helmersson has generalized the ideas to exploit the realness of the pa-
rameters (upper bound on u for repeated real parameters).
- The synthesis conditions are still AMI's in block diagonal form.
- Controller structure is still a LFT of a fixed LTI-system.
An improved upper bound on n for repeated real parameters is also given
by Braatz and Morari (1997).
e The results may also be conservative since they do not take into account
the rate variations in the parameters 4.
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LPV-systems

Parameter set, P C R/, LPV-system G, on state-space form:

z A(p)  Bilp) B2(p) ] [=
e| = |Cilp) Dulp) Diz(p)| | d
Y Ca(p) Dalp) 0 u

where a allowable trajectory p(-) satisfy:

e p(t) € P,forall t and
e foreach p; and all ¢, v, (p(t)) < pi(t) < 7;(p(t)), i.e. bounded rate of varia-
tion.
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LPV-systems: control problem formulation

The gain-scheduling output feedback controller K (p) is given by:

Ti _ TNAPE miPm; TNQ;

u Ck(p,p) Dxkl(p,p) Y

e Induced L, performance bound ~

\o mﬂﬁ.vmﬁ.v%. < Qw\o &HAJ&AJ%. VT >0

e Lyapunov function V(z., P(p)) = zaP(p)z
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LPV-systems: Basic characterization (Apkarian and Adams,1998)

There exists a gain-scheduling output-feedback controller enforcing internal stability
and a performance bound -, whenever there exist P-D matrices X = X? > 0 and
Y =Y7T > 0and a P-D quadruple (A, Bk, Cx, Dx), such that

"X + XA+ BrCy + (%) * * *
\wml_l\wl_lmm@meM |M\|_|\ww\|_|mw0>‘wml_|7¢v * *
(XB1 + waEV% (By + BaDg Dop)? -1 * <0
L C1+ D12 Dk O C1Y + D15Ck D11+ D12Dg Doy —1
~N - 50
I Y

e The controller (Ax, Bx,Ck, Dk ) can be reconstructed from:

»vmﬂ Y WDQ A\wmﬂv.wwm“gxu@mmv



LPV-systems: Projected solvability conditions (Apkarian and Adams,1998)

There exists a gain-scheduling output-feedback controller enforcing internal stability
and a performance bound -, whenever there exist P-D matrices X = X7 > 0 and
Y =Y >0, such that

T X+XA+ATX XB,| CT
BT X —~I | DY, <0
0 |1 0 |1
I Ch D11 | =1 |
T Y 4+YAT+AY YCT| By |
.>\.M\ 0 .>\\N 0
QHM\ |Q\N NUHH <0
0 |1 - - 0 |1
i B4 Dyy | =1 i
S
IY

where N'x and Ny are bases for the nullspaces of [Cy, Doy ] and [Bf  Di,].
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LPV-systems: Projected solvablility conditions (Apkarian and Adams,1998)

e Existence conditions become necessary and sufficient if quadratic stability is im-
posed through Lyapunov function:

Vize, P(p)) = HMEAEHQ? with z, = ~ ‘ ~
T K

e The controller can be constructed from X and Y along the lines of (Gahinet, 1994).
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LPV-systems: Summary and remarks

Induced L, performance can be tested in terms of two affine linear matrix inequal-
ities (AMI). However, these are dependent on the parameters p.

This yields a infinite dimensional convex optimization problem.

The suggested solution is to grid the parameter set P.

Pick a basis for the parameter dependent solutions X (p) and Y (p) to the AMI’s.
Solve the AMI’s at the grid points.

The number of inequalities grow exponentially with the number of parameters.
The number of inequalities grow linearly with number of grid points.
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LPV-systems: Summary and remarks

e If the state-space matrices (A(p), B(p),C(p), D(p)) depend in affine manner on
the parameters p, i.e.

0 ool-la 2legele 3]

Then it is sufficient to test the corner points (Apkarian et al., 1995). Then the in-
finite dimensional AMI’'s become finite dimensional.

e The controller becomes dependent on p. In order to be practically valid, this de-
pendence must be removed, for further details see (Apkarian and Adams, 1998).
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Summary on “recent work” in gain-scheduling control.

Renewed interest in gain-scheduling control and LPV-systems, due to new
powerful techniques and computational schemes (interior point methods)
which can be applied to LMI's.

Some nonlinear control problems can be solved.

Focuses on analysis and theoretical development rather than ad. hoc. ap-
proaches.

Applications using the LFT and LPV techniques start to emerge.

Number of papers and the focus from academia is increasing.

Several parallels between gain-scheduling control and model predictive
control.
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