Chapter 2

Distillation Theory

by
Ivar J. Halvorsen and Sigurd Skogestad

Norwegian University of Science and Technology
Department of Chemical Engineering
7491 Trondheim, Norway

This is a revised version of an article published
in the Encyclopedia of Separation Science by Aca-
demic Press Ltd. (2000). The article gives some of
the basics of distillation theory and its purpose

is to provide basic understanding and some tools

for simple hand calculations of distillation col-

umns. The methods presented here can be used to
obtain simple estimates and to check more rigorous
computations.
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2.1 Introduction

Distillation is a very old separation technology for separating liquid mixtures that
can be traced back to the chemists in Alexandria in the first century A.D. Today
distillation is the most important industrial separation technology. It is particu-
larly well suited for high purity separations since any degree of separation can be
obtained with a fixed energy consumption by increasing the number of equilib-
rium stages.

To describe the degree of separation between two components in a column or in
a column section, we introduce the separation factor:

_ (xl_/xH)T

MCYER @D

wherex denotes mole fraction of a component, subsdrigenotes light compo-
nent,H heavy component, denotes the top of the section, dhthe bottom.

It is relatively straightforward to derive models of distillation columns based on
almost any degree of detail, and also to use such models to simulate the behaviour
on a computer. However, such simulations may be time consuming and often pro-
vide limited insight. The objective of this article is to provide analytical
expressions that are useful for understanding the fundamentals of distillation and
which may be used to guide and check more detailed simulations. Analytical
expressions are presented for:

« Minimum energy requirement and corresponding internal flow
requirements.

e Minimum number of stages.
» Simple expressions for the separation factor.
The derivation of analytical expressions requires the assumptions of:
» Equilibrium stages.
« Constant relative volatility.
» Constant molar flows.

These assumptions may seem restrictive, but they are actually satisfied for many
real systems, and in any case the resulting expressions yield invalueable insights,
also for systems where the approximations do not hold.
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2.2 Fundamentals

2.2.1  The Equilibrium Stage Concept

The equilibrium (theoretical) stage concept (see Figure 2.1) is central in distilla-
tion. Here we assume vapour-liquid equilibrium (VLE) on each stage and that the
liquid is sent to the stage below and the vapour to the stage above. For some trayed
columns this may be a reasonable description of the actual physics, but it is cer-
tainly not for a packed column. Nevertheless, it is established that calculations
based on the equilibrium stage concept (with the number of stages adjusted appro-
priately) fits data from most real columns very well, even packed columns.

Saturated vapour leaving the stage

with equilibrium mole fractiory Liquid entering the stage(in,hy_in)
and molar enthalpl/(T,x) A +
Vapour phase
TP y Perfect mixing

in each phase

Liguid phase

Saturated liquid leaving the stage
with equilibrium mole fractiorx
and enthalpy, (T,x)

Vapour entering the stagg ., hin)

Figure 2.1: Equilibrium stage concept.

One may refine the equilibrium stage concept, for example by introducing back
mixing or a Murphee efficiency factor for the equilibrium, but these “fixes” have
often relatively little theoretical justification, and are not used in this article.

For practical calculations, the critical step is usually not the modelling of the
stages, but to obtain a good description of the VLE. In this area there has been
significant advances in the last 25 years, especially after the introduction of equa-
tions of state for VLE prediction. However, here we will use simpler VLE models
(constant relative volatility) which apply to relatively ideal mixtures.

2.2.2  Vapour-Liquid Equilibrium (VLE)

In a two-phase syster?H=2) with N, non-reacting components, the state is com-
pletely determined biX, degrees of freedonf)( according to Gibb’s phase rule;

f = Ng+2-PH (2.2)
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If the pressureR) andN¢-1 liquid compositions or mole fractiong)(are used as
degrees of freedom, then the mole fractioylsirf the vapour phase and the tem-
perature 7) are determined, provided that two phases are present. The general
VLE relation can then be written:

[V2, Yo oo Y1 T1 = F(P X X, oo Xy 1)

[y, T] = (P, %)

(2.3)

Here we have introduced the mole fractions x and y in the liquid an vapour phases
n n
respectively, and we trivially hav§ x =1 ang y, =1
i=1 i=1
In idealmixtures, the vapour liquid equilibrium can be derived from Raoult’s law
which states that the partial presspr@f a componentif in the vapour phase is

proportional to the saturated vapour pressyre () of the pure component. and the
liqguid mole fraction X;):

Pi = X pio(T) (2.4)

Note that the vapour pressure is a function of temperature only. For an ideas gas,
according to Dalton’s law, the partial pressure of a component is proportional to

the mole fraction times total pressug:= y;P  , and since the total pressure

P=p+py+...+py = Zpi = inpio(T) we derive:
| |

(¢] (o]
o= = 2D 25)
S xR

The following empirical formula is frequently used for computing the pure com-
ponent vapour pressure:

b

(o} _ f
Inp (T)~a+C————+T+dIn(T)+eT (2.6)

The coefficients are listed in component property data bases. The caskees#h
is the Antoine equation.
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2.2.3 K-values and Relative Volatility

TheK-value for a componentis defined asK; = y,/x; . The K-value is some-
times called the equilibrium “constant”, but this is misleading as it depends
strongly on temperature and pressure (or composition).

Therelative wlatility between componentsandj is defined as:

g et 2.7)

For ideal mixtures that satisfy Raoult’s law we have:

_ %) _ K e

a. = =
Do) K

(2.8)

Here pio(T) depends on temperature so the K-values will actually be constant
only close to the column ends where the temperature is relatively constant. On the
other hand the ratip®(T)/ pJQ(T) is much less dependent on temperature which
makes the relative volatility very attractive for computations. For ideal mixtures,
a geometric average of the relative volatilities for the highest and lowest temper-
ature in the column usually gives sufficient accuracy in the computations:

O = /% top i}, bottom:
We usually select a common reference componéuasually the least volatile or
“heavy” component), and define:

a; = a; = p(T)/p(T) (2.9)

|
The VLE relationship (2.5) then becomes:

a; X

ZO(ixi

y; = (2.10)

For a binary mixture we usually omit the component index for the light compo-
nent, i.e. we writex=x4 (light component) ana,=1-x (heavy component). Then
the VLE relationship becomes:

ax

y = T+ (a—Dx (2.11)
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This equilibrium curve is illustrated in Figure 2.2:

Mole fraction

of light
component 1
in vapour
phase

Increasingx

0 X e
Mole fraction of light

component in liquid phase

ax

Figure 2.2: VLE for ideal binary mixture/ = T+ (o —1Dx (@ -1)x

The differencey-x determine the amount of separation that can be achieved on a
stage. Large relative volatilities implies large differences in boiling points and

easy separation. Close boiling points implies relative volatility closer to unity, as
shown below quantitatively.

2.2.4  Estimating the Relative Volatility From Boiling Point Data

The Clapeyron equation relates the vapour pressure temperature dependency to
the specific heat of vaporizatioth(—lValo ) and volume change between liquid and
vapour phasez(vvap ):

dp’(T) _ AH"P(T)
T 1Av"3P(T)

(2.12)
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If we assume an ideal gas phase and that the gas volume is much larger than the
liquid volume, thenAVVaP=RT/ P . Integration of Clapeyrons equation from
temperaturdy, (boiling point at pressurB) to temperaturd (at pressurep )

then gives, whedAHYaP is assumed constant:

vap

0AH; 0
Inp’ = é‘ﬂf_pﬂlm+ InP E+ S___E_E (2.13)
PTER On,0 " refp T '
This gives us the Antoine coefficients:
AH®P vap
_~0ioglp _ . _

In most case®,; = 1 atm . Foran ideal mixture that satisfies Raoult’s law we
haveO(ij = pP(T)/ ij(T) and we derive:

vap vap vap vap
Inaij _ AH; i_AHJ- i_,_AHi —AH;, (2.14)
R Ty R Tbj RT

We see that the temperature dependency of the relative volatility arises from dif-

ferent specific heat of vaporization. For similar vaIuéS—I(ap: AH\J-/ap ), the
expression simplifies to:
—vap
AH " Tpi— Ty, -
Ina; = ——2_>2 = T.T.
i RT T where T, Thi T (2.15)
oot
B

Here we may use the geometric average also for the heat of vaporization:

This results in a rough estimate of the relative volatih'rtq' , based on the boiling
points only:

AR"P

T, —T,)/T
a =eﬁ( o~ 1)/ To wherep =

+ (2.17)

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



34

If we do not knowAH " " , a typical valug= 13 can be used for many cases.

Example:For methanol (L) and n-propanol (H), we hailg;; = 337.8K
and Tz = 370.4K and the heats of vaporization at their boiling points
are 35.3 kJ/mol and 41.8 kJ/mol respectlvely Thus

TB = J/337. 8D370a4 354K and AH = J/35.30041.8= 38.4.
This givesp = AH ~"/RTg = 38.4/(8.83135% = 13.1 and
a = e13:1032.6'354 < 3 34 which is a bit lower than the experimental

value.

2.2.5 Material Balance on a Distillation Stage

Based on the equilibrium stage concept, a distillation column section is modelled
as shown in Figure 2.3. Note that we choose to number the stages starting from
the bottom of the column. We denadtg andV,, as the total liquid- and vapour
molar flow rates leaving stage(and entering stagas1 andn+1, respectively).

We assume perfect mixing in both phases on a stage. The mole fraction of species
i in the vapour leaving the stage wikh is y; ,, and the mole fraction i, is X; ,.

Stagen+1

b v Y
Wi,n

Stagen
I I

Wi n-1

Stagen-1

Figure 2.3: Distillation column section modelled as a set of connected
equilibrium stages

The material balance for componest stagen then becomes (imjol i/seg):

dN.
i,n _
dt - (Ln+1Xi,n+1_vnyi,n)_(LnXi,n_Vn—lyi,n—l) (2.18)
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whereN,; , is the number of moles of componern stagen. In the following we
will consider steady state operation, d&¥; /dt = 0

It is convenient to define the net material flow) of component upwards from
stagen ton+1 [mol i/seg:

Wi,n = Vnyi,n_Ln+1xi,n+l (2.19)
At steady state, this net flow has to be the same through all stages in a column sec-
tion, i.e.w; = w; g =W .
The material flow equation is usually rewritten to relate the vapour composition
(yn) on one stage to the liquid composition on the stage akigyg:(

L
n+1 1
Y, = —X + =W, (2.20)

Ln Vn i,n+1 Vn i
The resulting curve is known as tbperatindine. Combined with the VLE rela-
tionship (equilibrium line) this enables us to compute all the stage compositions

when we know the flows in the system. This is illustrated in Figure 2.4, and forms
the basis of the McCabe-Thiele approach.

y (1) VLE: y=f(x)

(2) Material balance
operating line
y=(L/V)x+w/V

T I P X
Figure 2.4: Combining the VLE and the operating line to compute mole
fractions in a section of equilibrium stages.
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2.2.6  Assumption about Constant Molar Flows

In a column section, we may very often use the assumption about constant molar
flows. Thatis, weassumg, = L, ; = L mpl/dandV, _; =V =V [mol/

sl. This assumption is reasonable for ideal mixtures when the components have
similar molar heat of vaporization. An important implication is that the operating
line is then a straight line for a given section, yign = (L/V)xi, n+1TW/V

This makes computations much simpler since the internal flaves (V) do not
depend on compositions.

2.3  The Continuous Distillation Column

We here study the simple two-product continuous distillation column in Figure
2.5: We will first limit ourselves to a binary feed mixture, and the component
index is omitted, so the mole fractions,y,? refer to the light component. The
column hasN equilibrium stages, with the reboiler as stage number 1. The feed
with total molar flow raté= [mol/se¢ and mole fractiorz enters at stagd.

Condenser
Qc
D
Stage N < Xp
Ly
Vilt
Rectifying
section
F
X
z FYF Feed stage N
| T i
Vglg Stripping
section
Stage 2

Q
r<_z )

- X

Reboiler

Figure 2.5: An ordinary continuous two-product distillation column
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The section above the feed stage is denoted the rectifying section, or just the top
section. Here the most volatile component is enriched upwards towards the distil-
late product outlet (D). The stripping section, or the bottom section, is below the
feed, in which the least volatile component is enriched towards the bottoms prod-
uct outlet (B). The least volatile component is “stripped” out. Heat is supplied in
the reboiler and removed in the condenser, and we do not consider any heat loss
along the column.

The feed liquid fractiorg describes the change in liquid and vapour flow rates at
the feed stage:

ALg = gF

AV, = (1-gF (2.21)

The liquid fraction is related to the feed enthalmy) @s follows:

% >1 Subcooled liquid
h —h 0 =1 Saturated liquid
—_ V,sat 'F _ [] L. 229
9= —— % " [00<g<1 Liquid and vapour (2.22)
AH E =0 Saturated vapour
0 <0 Superheated vapour

When we assume constant molar flows in each section, we get the following rela-
tionships for the flows:

Vi = Vg+(1-q)F

Ly = Ly +qF
B T
~ (2.23)

2.3.1 Degrees of Freedom in Operation of a Distillation Column

With a given feed £,z andq), and column pressur®), we have only 2 degrees

of freedom in operation of the two-product column in Figure 2.5, independent of
the number of components in the feed. This may be a bit confusing if we think
about degrees of freedom as in Gibb’s phase rule, but in this context Gibb’s rule
does not apply since it relates the thermodynamic degrees of freedom inside a sin-
gle equilibrium stage.
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This implies that if we know, for example, the reflux{ and vapour Yg) flow
rate in the column, all states on all stages and in both products are completely
determined.

2.3.2 External and Internal Flows
The overall mass balance and component mass balance is given by:

F=D+B

Fz = DxD + BxB (2.24)

Herezis the mole fraction of light component in the feed, agdandxg are the
product compositions. For sharp splits wigh= 1 andxg = O we then have that
D=zF. In other words, we must adjust the product spliE such that the distillate
flow equals the amount of light component in the feed. Any deviation from this
value will result in large changes in product composition. This is a very important
insight for practical operation.

ExampleConsider a column with z=0.55%0.99, x3=0.01 (all these refer

to the mole fraction of light component) and D/F = B/F = 0.5. To simplify
the discussion set F=1 [mol/sec]. Now consider a 20% increase in the dis-
tillate D from 0.50 to 0.6 [mol/sec]. This will have a drastic effect on
composition. Since the total amount of light component available in the
feed 5 z=0.5[mol/sec], atleast 0.1 [mol/sec] of the distillate must now be
heavy component, so the amount mole fraction of light component in the
distillate is now at its best 0.5/0.6 = 0.833. In other words, the amount of
heavy component in the distillate will increase at least by a factor of 16.7
(from 1% to 16.7%).

Thus, we generally have that a changexternal flowgD/F andB/F) has a large
effect on composition, at least for sharp splits, because any significant deviation
in D/F from zimplies large changes in composition. On the other hand, the effect
of changes in thimternal flows(L andV) are much smaller.

2.3.3  McCabe-Thiele Diagram

The McCabe-Thiele diagram wheyés plotted as a functior along the column
provides an insightful graphical solution to the combined mass balance (“opera-
tion line”) and VLE (“equilibrium line”) equations. It is mainly used for binary
mixtures. Itis often used to find the number of theoretical stages for mixtures with
constant molar flows. The equilibrium relationship = f(x,) (y as a function
of x at the stages) may be nonideal. With constant molar flow, L and V are con-
stant within each section and the operating lineaq a function ok between the
stages) are straight. In the top section the net transport of light component
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w = x5D. Inserted into the material balance equation (2.20) we obtain the oper-
ating line for the top section. A similar expression is also derived for the bottom
section:

Top: y, = %ET(Xn+ 1= Xp) + Xp
(2.25)
Bottom: y, = %aa(xn+ 1—Xg) + Xg
A typical McCabe-Thiele diagram is shown in Figure 2.6:
y VLE y=f(x)
A _
4 |
20 Condenser
/ I
| |
Yoo —— = == Top section operating line
I~ Top perating
P 7 & y=x | Slope Lr/\y)
Bottom section [\
operating line | \/ Optimal feed :

Slope (g/Vp) 4 | N stage location

-— | The intersection of the

operating lines is found
along the §-line”.

Slopedg/(g-1)

|/
7

/
A
/ |
4 |

~

\

|
>~ x
Xp 1

! |
! |
| |
| |
Reboiler | | |
I I
XB Xg Z

Figure 2.6: McCabe-Thiele Diagram with an optimally located feed.

The optimal feed stage is at the intersection of the two operating lines and the feed
stage compositiorkg yg) is then equal to the composition of the flashed feed mix-
ture. We have that = gx +(1-q)yg . Fa=1 (liquid feed) we findx = z

and forg=0 (vapour feed) we find/r = z . For other casesgofve must solve

the equation together with the VLE.

At minimum reflux, a pinch zone, which is a zone of constant composition will
develop on both sides of the feed stage if it is optimally located.
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2.3.4  Typical Column Profiles— Not optimal feed location

An example of a column composition profile is shown in Figure 2.7 for a column
with z=0.5, a =1.5, N=40, N=21 (counted from the bottom, including the
reboiler), yy=0.90, %=0.002. This is a case were the feed stage is not optimally
located. The corresponding McCabe-Thiele diagram is shown in Figure 2.8: We
see that the feed stage is not located at the intersection of the two operating lines,
and that there is a pinch zone above the feed, but not below.

1 el ~I~ T T T - T T T T
ook S — Light key |
'R : - - Heavy key

N z

0.8} \ J
\
N
\
07 B \ -
\

0a=1.50 N

0.6F z=0.50 N y

g=1.00 : S~
N=40 :

Molfraction
o
[6)]

N_=21 N
F N
04k XDH:O.IOOO AN |
XBL—O.OOZO N
0.3 * 1
\
\
0.2f \ ]
\
\
0.1F N
O 1 1 1 1 - 1 1 1 1
0 5 10 15 20 25 30 35 40
Bottom Stages Top

Figure 2.7: Composition profileq(,x) for case with non-optimal feed location.
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1r -
-

0.9t o
a=1.50

0.8F z=0.50
g=1.00

0.7F N=40 Optimal feed
NF:21 stage

06k xDH:o.looo IIIIIIIII
xBL:O.OOZO

Vapour Molfraction (y)
o =]
H ul

©
w
T

7 Actual
feed stage

o
N
T

0.1f

0 0.2 0.4 0.6 0.8 1
Liquid Molfraction (x)

Figure 2.8: McCabe-Thiele diagram for the same example as in Figure 2.7: Observe that
the feed stage location is not optimal.

2.4  Simple Design Equations

2.4.1  Minimum Number of Stages— Infinite Energy

The minimum number of stages for a given separation (or equivalently, the max-
imum separation for a given number of stages) is obtained with infinite internal
flows (infinite energy) per unit feed. This always holds for single-feed columns
and ideal mixtures, but may not hold, for example, for extractive distillation with
two feed streams.

With infinite internal flows (“total reflux”)L,/F=c0 andV,/F=c. A material bal-
ance across any part of the column giwgs= L,,+; and similarly a material
balance for any component give§ Y, = Ln+1 Xh+1- ThUS; Y, = Xp+1, @nd with

constant relative volatility we have:
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y X X X
a = L,n/ L, n - L,n+1/ L,n (2.26)

Yu,n XH,n XH,n+1 XH,n

For a column or column section witl stages, repeated use of this relation gives
directly Fenske’s formula for the overall separation factor:

oo 20O D40 _
OG-0 /0-0 = (2.27)
KHO, CHig

For a column with a given separation, this yields Fenske’s formula for the mini-
mum number of stages:

_InS
Nimin = g (2.28)

These Fenske expressions do not assume constant molar flows and apply to the
separation between any two components with constant relative volatility. Note
that although a high-purity separation (lageequires a larger number of stages,

the increase is only proportional to thegarithm of the separation factor. For
example, increasing the purity level in a product by a factor of 10 (e.g. by reduc-
ing Xy p from 0.01 to 0.001) increasdl,;, by about a factor ofn10 = 2.3

A common rule of thumb is to select the actual number of stdges 2N, ., (or
even larger).

2.4.2  Minimum Energy Usage— Infinite Number of Stages

For a given separation, an increase in the number of stages will yield a reduction
in the reflux (or equivalently in the boilup). However, as the number of stages
approach infinity, a pinch zone develops somewhere in the column, and the reflux
cannot be reduced further. For a binary separation the pinch usually occurs at the
feed stage (where the material balance line and the equilibrium line will meet),
and we can easily derive an expression for the minimum reflux With oo . For

a saturatetlquid feed(q=1) we have King's formula:

ro n—0or

_ LD H,D
Lrmin = _&’:’1—_': (2.29)
whererl_ p = XpD/zF s the recovery fraction of light component, ar,lpID

of heavy component, both in the distillate. The value depends relatively weakly
on the product purity, and for sharp separations (wheyey = 1 and
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'yp = 0), we havel ;= F/(a - 1). Actually, equation (2.29) applies without
stipulating constant molar flows or constantbut thenL;, is the liquid flow
entering the feed stage from above, ani$ the relative volatility at feed condi-
tions. A similar King's formula, but in terms o¥ 5 ..., entering the feed stage
from below, applies for a saturatedpour feedqg=0):

n

ry p—ar
_'H,B L, B
Vemin = — -1 F (2.30)
For sharp separations we gég ..., FAa -1). In summary, for a binary mixture
with constant molar flows and constant relative volatility, the minimum boilup for
sharp separationss:

Feed liquid, G=1: Vgyip= ——F +D

1 (2.31)

Feed vapour, 9=0: ¥ in = G—ilF

Note that minimum boilup has a finite lower limit for sharp separations. From this
we establish one of the key properties of distillatigve can achieve any product
purity (even “infinite separation factoriyith a constant finite energias long as

it is higher tharthe minimumby increasing the number of stages

Obviously, this statement does not apply to azeotropic mixtures, for vehich

for some composition. However, we can get arbitrary close to the azeotropic com-
position, and useful results may be obtained in some cases by treating the
azeotrope as a pseudo-component and wsiiog this pseudo-separation.

2.4.3  Finite Number of Stages and Finite Reflux

Fenske’s formul®= aN applies to infinite reflux (infinite energy). To extend this
expression to real columns with finite reflux we will assume constant molar flows
and consider below three approaches:

1. Assume constant K-values and derive the Kremser formulas (exact close to
the column end for a high-purity separation).

2. Assume constant relative volatility and derive the following extended Fen-
ske formula (approximate formula for case with optimal feed stage
location):
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N
GN(LT/VT) !

NB
(Lg/Vp)

(2.32)

HereNr is the number of stages in the top sectionldgith the bottom
section.

3. Assume constant relative volatility and derive exact expressions. The most
used are the Underwood formulas which are particularly useful for com-
puting the minimum reflux (with infinite stages).

2.4.4  Constant K-values— Kremser Formulas

For high-purity separations most of the stages are located in the “corner” parts of
the McCabe-Thiele diagram where we according to Henry’s law may approxi-
mate the VLE-relationship, even for nonideal mixtures, by straight lines;

Bottom of columny, = H, x; (light componentyx - 0)
Top of columnyy = Hy x4 (heavy componenky — 0)

whereH is Henry’s constant. For the case of constant relative volatility, Henry’s
constantinthe bottomisl, = a andinthetoHs, = 1/a . Thus, with con-
stant molar flows, both the equilibrium and mass-balance relationships are linear,
and the resulting difference equations are easily solved analytically. For example,
at the bottom of the column we derive for the light component:

X n+1 = (Vp/Lg)H x| +(B/Lg)x g

(2.33)

wheres = (Vg/Lg)H >1 isthe stripping factor. Repeated use of this equation
gives the Kremser formula for stadyg from the bottom (the reboiler would here
be stage zero):

XN, = sex g[1+(1-Vg/Lg)(1-s8)/(s— 1)] (2.34)

This assumes we are in the region where s is constan, k)

At the top of the column we have for the heavy component:

(Lt/V1)(A/Hy)Yy o+ (D/V)xy b

= ayy, nt (1-Ly/Vo)Xy p

Vi no
Hn-1 (2.35)
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where a = (Ly/V;)/Hy>1 is the absorbtion factor. The corresponding
Kremser formula for the heavy component in the vapour phase at $tage
counted from the top of the column (the accumulator is stage zero) is then:

Yh, N, = atx, pl1+(1- L/ Vo) (1-an)/(a-1)] (2.36)

This assumes we are in the region where a is constan,i=e0

For hand calculations one may use the McCabe-Thiele diagram for the interme-
diate composition region, and the Kremser formulas at the column ends where the
use of the McCabe-Thiele diagram is inaccurate.

Example We consider a column with N=40N21, a =1.5, =0.5, F=1,
D=0.5, Vg=3.2063. The feed is saturated liquid and exact calculations give
the product compositiongpp= x| g=0.01.

We now want to have a bottom product with only 1 ppm heavy product, i.e.
X_g = 1.e-6. We can use the Kremser formulas to easily estimate the addi-
tional stages needed when we have the same energy ugage063.

(Note that with the increased purity in the bottom we actually get B=0.4949
and Lg=3.7012). At the bottom of the colurh) = a = 1.5  and the
stripping factor iss = (Vg/Lg)H = (3 2063 3.7121.5 = 1.2994.

With x_g=1.e-6 (new purity) and<|_ Ng = 0.01 (old purity) we find by
solvmg the Kremser equation (2.34) with respect gaiat N3=33.94, and

we conclude that we need about 34 additional stages in the bottom (this is
not quite enough since the operating line is slightly moved and thus affects
the rest of the column; using 36 rather 34 additional stages compensates
for this).

The above Kremser formulas are valid at the column ends, but the linear approx-
imation resulting from the Henry’s law approximation lies above the real VLE
curve (is optimistic), and thus gives too few stages in the middle of the column.
However, if the there is no pinch at the feed stage, i.e. the feed is optimally
located, then most of the stages in the column will be located at the columns ends
where the above Kremser formulas apply.

2.45 Approximate Formula with Constant Relative Volatility

We will now use the Kremser formulas to derive an approximation for the sepa-
ration factor S. First note that for cases with high-purity products we have
S= 1/( % BXH, p) Thatis, the separation factor is the inverse of the product of
the key component product impurities.
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We now assume that the feed stage is optimally located such that the composition
at the feed stage is the same as that in the feed y|_|e = Yu, F and
X Ng = XL F Assumlng constant relative volatility and ' using | :
HH =1/a,a = (yLF/xLF)/(yHF/xHF) andN = Ny +Ng+1 (mcludlng

total reboiler) then gives:

(LT/VT) LI
S=a 2.37
(Lg/Vg)Ne(XHEYLF) (2:37)

wherec = [1+ %—EM}[ Eﬂ—ﬁ l-a )} (2.38)

LgO (s—1 Vg (a-1)

We know that S predicted by this expression is somewhat too large because of the
linearized VLE. However, we may correct it such that it satisfies the exact rela-
tionshipS = aN at infinite reflux (wherég/Vg = V{/Ly = 1 andc=1) by
dropping the factod/ (x4gy, g) (which as expected is always larger than 1). At
finite reflux, there are even more stages in the feed region and the formula will
further oversestimate the value of S. However, since ¢ > 1 at finite reflux, we may
partly counteract this by setting=1. Thus, we delete the term ¢ and arrive at the
final extended Fenske formula, where the main assumptions are that we have con-
stant relative volatility, constant molar flows, and that there is no pinch zone
around the feed, i.e. the feed is optimally located (Skogestad’s formula):

Nt
S=q E—tT—%—%\I— (2.39)
B

whereN = NT+NB+1 )

Together with the material balancEz- = Dxp+Bxg , this approximate for-
mula can be used for estimating the number of stages for column design (instead
of e.g. Gilliand plots), and also for estimating the effect of changes of internal
flows during column operation. However, its main value is the insight it provides:

1. We see that the best way to increase the sepa&isdo increase the
number of stages.

2. During operation wher is fixed, the formula provides us with the impor-
tant insight that the separation fac&is increased by increasing the
internalflows L andV, thereby makind./V closer to 1. However, the effect
of increasing the internal flows (energy) is limited since the maximum sep-
aration with infinite flows iS = aN
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3. We see that the separation fa@aepends mainly on the internal flows
(energy usage) and only weakly on the dpli. This means that if we
changeD/F thenSwill remain approximately constant (Shinskey’s rule),
that is, we will get a shift in impurity from one product to the other such
that the product of the impurities remains constant. This insight is very
useful.

Example Consider a column WIthD y = 0.01 (1% heavy in top) and

Xg | = 0.01 (1% light in bottom). The separation factor is then approxi-
matelyS = 0.99x 0.99( 0.0¥ 0.01= 9801 . Assume we increase D
slightly from 0.50 to 0.51. If we assume constant separation factor (Shins-
key’s rule), then we find tharb y  changes from 0.01 to 0.0236 (heavy
impurity in the top product increases by a factor 2.4), agq_ changes
from 0.01 to 0.0042 (light impurity in the bottom product decreases by a
factor 2.4). Exact calculations with column data: N=4@=R1, a =1.5,

7 =0.5, F=1, D=0.5, l3/F=3.206, gives thak, ,; changes from 0.01 to
0.0241 andxg | changes from 0.01 to O. 0046 (separation factor changes
from S= 9801 to 8706). Thus, Shinskey’s rule gives very accurate
predictions

However, the simple extended Fenske formula also has shortcomings. First, it is
somewhat misleading since it suggests that the separation may always be
improved by transferring stages from the bottom to the top section if
(Ly/V7) > (Vg/Lp). Thisis not generally true (and is not really “allowed” as it
violates the assumption of optimal feed location). Second, although the formula
gives the correct limiting valu& = aN  for infinite reflux, it overestimates the
value ofS at lower reflux rates. This is not surprising since at low reflux rates a
pinch zone develops around the feed.

Example:Consider again the column with N=40N21, a =1.5, 7 =0.5,

F=1, D=0.5; L1=2.706. Exact calculations based on these data gjy§=x

x g=0.01 and S = 9801. On the other hand, the extended Fenske formula
with Ny=20 and N;=20 yields:

= 1.81x (2.7606' 3.208%0 _ = 16586000 —O—:f’f = 30774

(3.706/ 3.20420 18.48

corresponding to xp= X g = 0.0057. The error may seem large, but it is
actually quite good for such a simple formula.

2.4.6  Optimal Feed Location

The optimal feed stage location is at the intersection of the two operating lines in
the McCabe-Thiele diagram. The corresponding optimal feed stage composition
(X Yp) can be obtained by solving the following two equations:
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z= qx+t(l-0qyg andyg =
we findxg = z and for g=0 (vapour feed) we finyg = z

axg/(1+(a-1)xg) . Forg=1 (liquid feed)

(in the other cases we

must solve a second order equation).

There exists several simple shortcut formulas for estimating the feed point loca-

tion. One may be derived from the Kremser equations given above. Divide the

Kremser equation for the top by the one for the bottom and assume that the feed
is optimally located to derive:

O Vqo (a-1)

, av#[“%ﬁb}
"

XL F

XH. D (N; —NB)
XL,B

(2.40)
O VgHi1-sNe

g—_m [HBI_L_BD (s=1) }

The last “big” term is close to 1 in most cases and can be neglected. Rewriting the
expression in terms of the light component then gives Skogestad’s shortcut for-
mula for the feed stage location:

(1-Y¢) Xg |0
i ).

Ina

Nt—Ng = (2.41)

whereygr andxg at the feed stage are obtained as explained above. The optimal
feed stage location counted from the bottom is then:

[N+ 1-(Nr—-Ng)]
2

Np = Ng+1 = (2.42)

whereN is the total number of stages in the column.

2.4.7  Summary for Continuous Binary Columns

With the help of a few of the above formulas it is possible to perform a column
design in a matter of minutes by hand calculations. We will illustrate this with a
simple example.

We want to design a column for separating a saturated vapour mixture of 80%
nitrogen (L) and 20% oxygen (H) into a distillate product with 99% nitrogen and
a bottoms product with 99.998% oxygen (mole fractions).
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Component data: Normal boiling points (at 1 atm),, = 77.4K, Ty = 90.2K,
heat of vaporization at normal boiling points: 5.57 kJ/mol (L) and 6.82 kJ/mol

(H).

The calculation procedure when applying the simple methods presented in this
article can be done as shown in the following steps:

1. Relative volatility:

The mixture is relatively ideal and we will assume constant relative volatil-
ity. The estimated relative volatility at 1 atm based on the boiling points is
gvap(Tp =T
Ina = AH_ ( bH_ L) where
RT, Ty
AHV@P = /557016.82= 6.16 kd/mo| T, = /TbHTbL = 83.6K and
T, —T, = 90.2— 77.7= 18.8. This gives(AHV2P)/(RT,) = 8.87

and we finda = 3.89 (however, it is generally recommended to olotain
from experimental VLE data).

2. Product split:

From the overall material balance we get
z — _

D _ %8 _ 0.8—0.00002 _ 0.808.

F xp—Xg 0.99- 0.00002

3. Number of stages:

0.99x 0.99998_
0.01x 0.00002
The minimum number of stages required for the separation is

Npin = INS/Ina = 11.35 and we select the actual number of stages as

N = 23 (=2N

The separation factor iS = 4950000 ,i.e.B=15.4.

min)'

4. Feed stage location
With an optimal feed location we have at the feed stag®) thatyg = z¢
=0.8 andxg = yg/(a—(a—-1)yg) = 0.507 .

Skogestad’s approximate formula for the feed stage location gives
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_ (1-Yp) Xg U
NT—NB—Ina X }[(1—&))}%('”0()

_ 0.2 7. 10.00002 _
= In 0.507}‘[ Soi |/ 1358 = —5.27

corresponding to the feed stage
Ng = [N+1-(Ny—=Ng)]/2 = (23+ 1+ 5.29/2 = 14.6= 15

5. Energy usage:

The minimum energy usage for a vapour feed (assuming sharp separation)
isVi/F = /(a—-1) = 1/2.89 = 0.346. With the choice

N = 2Nmin,_the actual energy usagé) (s then typically about 10%

above the minimum\(,,;,), i.e.V/F is about 0.38.

This concludes the simple hand calculations. Note again that the number of stages
depends directly on the product purity (although only logarithmically), whereas
for well-designed columns (with a sufficient number of stages) the energy usage
is only weakly dependent on the product purity.

Remark 1:

The actual minimum energy usage is slightly lower since we do not have
sharp separations. The recovery of the two components in the bottom prod-
uct ier, B = (xH' gB)/ (zgyF) = 0.9596 and _ _

g = (x,_‘ sB)/(zg F) = O,_ o) fr_om the formulas given earlier the exact
value for nonsharp separations is

Vni/F = (0.9596- 0.0x 3.8Y/(3.89- 1) = 0.332

Remark 2:
For a liquid feed we would have to use more energy, and for a sharp
separation
Vii/ F = /(a-1)+D/F = 0.346+ 0.808= 1.154

Remark 3:

We can check the results with exact stage-by-stage calculations. With
N=23,Ng=15 anda =3.89 (constant), we fisdF = 0.374 which is about
13% higher thaw,,;j;=0.332.

Remark 4:

A simulation with more rigorous VLE computations, using the SRK equa-
tion of state, has been carried out using the HYSYS simulation package.
The result is a slightly lower vapour flow due to a higher relative volatility
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(a inthe range from 3.99-4.26 with an average of 4.14). More precisely, a
simulation withN=23,Ng=15 gavev/F=0.291, which is about 11% higher
than the minimum valu®" . = 0.263 found with a very large number
of stages (increasing N>60 did not give any significant energy reduction
belowV' ..., ). The optimal feed stage (wi+23) was found to balg=15.

Thus, the results from HYSYS confirms that a column design based on the very
simple shortcut methods is very close to results from much more rigorous
computations.

2.5 Multicomponent Distillation — Underwood’s Method

We here present the Underwood equations for multicomponent distillation with
constant relative volatility and constant molar flows. The analysis is based on con-
sidering a two-product column with a single feed, but the usage can be extended
to all kind of column section interconnections.

It is important to note that adding more components does not give any additional
degrees of freedom in operation. This implies that for an ordinary two-product
distillation column we still have only two degrees of freedom, and thus, we will
only be able to specify two variables, e.g. one property for each product. Typi-
cally, we specify the purity (or recovery) of the light key in the top, and specify
the heavy key purity in the bottom (the key components are defined as the com-
ponents between which we are performing the split). The recoveries for all other
components and the internal flowisgndV) will then be completely determined.

For a binary mixture with given products, as we increase the number of stages,
there develops a pinch zone on both sides of the feed stage. For a multicomponent
mixture, a feed region pinch zone only develops when all components distribute
to both products, and the minimum energy operation is found for a particular set
of product recoveries, sometimes denoted as the “preferred split”. If all compo-
nents do not distribute, the pinch zones will develop away from the feed stage.
Underwood’s methods can be used in all these cases, and are especially useful for
the case of infinite number of stages.

2.5.1 The Basic Underwood Equations
The net material transpom) of component upwards through a stages:

Wi = Vnyi,n_Ln+ 1Xin+1 (2.43)

Note thatw; is constant in each column section. We assume constant molar flows
(L=L =L .1 and V=V,;=V+1), and assume constant relative volatility. The VLE
relationship is then:
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;X /X
y; = ——— whereq; = (i) (2.44)
3 aix (Ye/ %)

We divide equation (2.43) by, multiply it by the factora,/ (a;, —¢) , and take
the sum over all components:

GIXII’I
1 oW, _Z(Gi—@)_L O X n+1
RicErh S o RACED o

The parametep s free to choose, and the Underwood roots are defined as the
values ofg@ which make the left hand side of (2.45) unity, i.e which satisfy

V = it 2.46
) i21(ai_(p) (249

The number of valueg satisfying this equation is equal to the number of com-
ponentsNe.

Comment: Most authors use a product compositighdr component recovery
(r) in this definition, e.g for the top (subscript T) section or the distillate product
(subscript D):

W, =W, 1+ =W =Dxy=r1pzF (2.47)

but we prefer to use the net component molar flewy gince it is more general.
Note that use of the recovery is equivalent to using net component flow, but use
of the product composition is only applicable when a single product stream is
leaving the column. If we apply the product recovery, or the product composition,
the defining equation for the top section becomes:

i, D | i | D
Z(a o Z(a o (2.48)

NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



2.5 Multicomponent Distillation — Underwood’s Method 53

2.5.2 Stage to Stage Calculations

By the definition ofgp from (2.46), the left hand side of (2.45) equals one, and the
last term of (2.45) then equals:

(@i o= (a; = @)ax; )

|Xi,n O
Z(a ar L 2ee Ml 2T @ew

The terms withO(i2 disappear in the nominator apd  can be taken outside the
summation, thus (2.45) is simplified to:

a; |n+1 ] [
VZ -9 S wi (2.49)

This equation is valid for any of the Underwood roots, and if we assume constant
molar flows and divide an equation fay ~ with the one tpar , the following
expression results:

a; X a. X

|n+mD i%i,n [

P Ta;- 90 Bpkd“ © —(pk)D
O a.x |:| Hp
177, n+ mgj j i | n
 (0;—9;) 0 E\Z(O‘ (PJ)D

Note the similarities with the Fenske and Kremser equations derived earlier. This
relates the composition on a stage (n) to an composition on another stage (
The number of independent equations of this kind equals the number of Under-
wood roots minus 1 (since the number of equations of the type as in equation
(2.49) equals the number of Underwood roots), but in addition we also have
\;x = 1. Together, this is a linear equation system for compuixp Fem

enx; is known and the Underwood roots is computed from (2.46).

(2.50)

Note that so far we have not discussed minimum reflux (or vapour flow rate), thus
these equation holds for any vapour and reflux flow rates, provided that the roots
are computed from the definition in (2.46).
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2.5.3 Some Properties of the Underwood Roots

Underwood showed a series of important properties of these roots for a two-prod-
uct column with a reboiler and condenser. In this case all components flow
upwards in the top sectionf + 20 ), and downwards in the bottom section
(w; g<0). The mass balance yieldss, B=W W Whanqz,: = Fz
Underwood showed that in the top section (V\Np components) the rootsp( )
obey:

Oy >Q;>0,>0,> 05> .00 >y > O (2.51)

In the bottom section (where; |, = w; <0 ) we have a different set of roots
denoted 0 ) computed from

o (-, B)zF a,(—(1-r, p))zF
= ' 2.52
Z(a D M e il Yy ety (2:52)
which obeywl>a1> Wo>0,>P3>05> ... > Wy >0y, (2.53)

Note that the smallest root in the top section is smaller than the smallest relative
volatility, and the largest root in the bottom section is larger then the largest vol-
atility. It is easy to see from the defining equations that as

Vi-o 0O @ -0 andsimilarly as/g - o 0O  ; - 0

When the vapour flow is reduced, the roots in the top section will decrease, while
the roots in the bottom section will increase, but interestingly Underwood showed
that@, = ; , ; . Avery important result by Underwood is that for infinite number
ofstagesV - Vi, 0O @ -y, .

Thus, at minimum reflux, the Underwood roots for the tgp ( ) and bottgm ( )
sections coincide. Thus, if we denote these common r6ots , and recall that
V:-Vg = (1-0)F, and thatwI T-W, g =W g =zF we obtaln the fol-
lowing equation for the “minimum reflux” common root@ () by subtracting the
defining equations for the top and bottom sections:

aiz
(1-9q) = .Z(O‘i—e) (2.54)

We denote this expression the feed equation since only the feed propgeies (

) appear. Note that this is not the equation which defines the Underwood roots
and the solutions{ ) apply as roots of the defining equations only for minimum
reflux conditions N = « ). The feed equation Hesroots, (but one of these is
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not a common root) and tidx-1 common roots obey:

0,>6;>0,>8,>... >8y_ >0y, . Solution of the feed equation gives us
the possible common roots, but all pairs of roaps &nd g, , 4 ) for the top and
bottom section do not necessarily coincide for an arbitrary operating condition.
We illustrate this with the following example:

Assume we start with a given product sdiii) and a large vapour flow
(V/F). Then only one componen{with relative volatilitya; ) can be dis-
tributed to both products. No roots are common. Then we gradually reduce
V/F until an adjacent compongpri+1 orj=i-1 becomes distributed. E.g
forj=i+1 one setof roots will coincidep, = y, ., = 6; ,whilethe others
do not. As we reduc¥/F further, more components become distributed
and the corresponding roots will coincide, until all components are distrib-
uted to both products, and then all el roots from the feed equation

also are roots for the top and bottom sections.

An important property of the Underwood roots is that the value of a pair of roots
which coincide (e.g. whew, = ;. = 6, ) will not change, even if only one,
two or all pairs coincide. Thus all the possible common roots are found by solving
the feed equation once.

2.5.4  Minimum Energy — Infinite Number of Stages

When we go to the limiting case of infinite number of stages, Underwoods’s equa-
tions become very useful. The equations can be used to compute the minimum
energy requirement for any feasible multicomponent separation.

Let us consider two cases: First we want to compute the minimum energy for a
sharp split between twadiace_znt key (_:omponentsandj+1 (rj,D =1 and
Fi+1,0 = 0). The procedure is then simply:

1. Compute the common rocﬁj( ) for whicxt? > ej >0 4 q

az
from the feed equatiofl—q) = § ——=
,Z(ai -6)

2. Compute the minimum energy by applying the definition equationﬁ)for

Vmin _ L
F ,zl(ai—ej)'
| =

M fori<j

Note that the recoverigs , = fori> i
' ori> |
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For example, we can derive Kings expressions for minimum reflux for a binary
feed @ =z,z4 =(1-2 ,a, = a,a04 =1, and liquid feedg=1)). Con-

sider the case with liquid feedi£€1). We find the single common root from the
feed equation®® = a/(1+(a—-1)z) , (observa=26=1 as expected). The
minimum reflux expression appears as we use the defining equation with the com-
mon root:

L+mi Vo or. vz Or, bz Ory (1-2
Tmin _ YTmin_D _ D4 _ YLD H,D
F F F IZ(ai—e) a-0 1-9 (2.55)

and when we substitute f@r and simplify, we obtain King's expression:

L. r —ar
Tmin L,D H, D
= = . 2.
F a-1 (2.56)

Another interesting case is minimum energy operation when we consider sharp
split only between the most heavy and most light components, while all the inter-
mediates are distributed to both products. This case is also denoted the “preferred
split”, and in this case there will be a pinch region on both sides of the feed stage.
The procedure is:

1. Compute all th&l.-1 common roots )from the feed equation.

2.5etr; o = 1and ry p = 0 and solve the following linear equation set
with N.—-1 equations with respect o/, Mo o M3, D...rNc_l] N.—-1
variables):

NC
v - ari pz,
T =
izl(ai_el)

(2.57)

Note that in this case, when we regard the most heavy and light components as
the keys and all the intermediates are distributed to both products and Kings very
simple expression will also give the correct minimum reflux for a multicompo-
nent mixture (folg=1 or q=0). The reason is that the pinch then occurs at the feed
stage. In general, the values computed by Kings expression give a (conservative)
upper boundvhen applied directly to multicomponent mixtures. An interesting
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result which can be seen from Kings’s formula is that the minimum reflux at pre-
ferred split (forg=1) is independent of the feed composition and also independent
of the relative volatilities of the intermediates.

However, with the more general Underwood method, we also obtain the distribu-
tion of the intermediates, and itis easy to handle any liquid fractjpimthe feed.

The procedure for an arbitrary feasible product recovery specification is similar
to the preferred split case, but then we must only apply the Underwood roots (and
corresponding equations) with values between the relative volatilities of the dis-
tributing components and the components at the limit of being distributed. In

cases where not all components distribute, King’s minimum reflux expression
cannot be trusted directly, but it gives a (conservatippger bound

Figure 2.9 shows an example of how the components are distributed to the prod-
ucts for a ternary (ABC) mixture. We choose the overhead vapour NeW+)

and the distillate product flowD=V-L) as the two degrees of freedom. The
straight lines, which are at the boundaries when a component is at the limit of
appearing/disappearing (distribute/not distribute) in one of the products, can be
computed directly by Underwood’s method. Note that the two peaks énd

Pgc) gives us the minimum vapour flow for sharp split between A/B and B/C. The
point Pyc, however, is at the minimum vapour flow for sharp A/C split and this
occurs for a specific distribution of the intermediate B, known as the “preferred
split”.

Kings’s minimum reflux expression is only valid in the triangle below the pre-
ferred split, while the Underwood equations can give all component recoveries for
all possible operating points. The shaded area is not feasible since all liquid and
vapour streams above and below the feed have to be positive.
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VIE Sharp A/BC split Sharp AB/C split
A A AB
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Figure 2.9: Regions of distributing feed components as functiovi afid D for a feed
mixture with three components: ABC; Represent minimum energy for sharp split
between componemntandj. For large vapour flow (above the top “saw-tooth”), only one
component distribute. In the triangle beloy-Pall components distribute.

2.6  Further Discussion of Specific Issues

2.6.1 The Energy Balance and Constant Molar Flows

All the calculations in this article are based on the assumption of constant molar
flows in a section, i.e/n =V,_.1 =V andin =Lysq1 = . This is a very
common simplification in distillation computations and we shall use the energy
balance to see when we can justify it. The energy balance is similar to the mass
balance, but now we use the molar enthalpydf the streams instead of compo-
sition. The enthalpy is computed for the actual mixture and will be a function of
composition in addition to temperature (or pressure). At steady state the energy

balance around stagebecomes:

thL, n_Vn— 1hV, n-1- I‘n+ 1hL, n+ 1_VnhV, n (2-58)
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Combining this energy balance with the overall material balance on a stage;
Vio_1—Ly = V,—-L, 1 = W, whereWis the net total molar flow through a
section, i.eW=D in the top section and\/=B in the bottom section) yields:

hL,n_hL,n+1

h —h
V,n-1 L’n+W

V. =V__
: 1hV,n_hL,n+1 hV,n_hL,n+1

(2.59)

From this expression we observe how the vapour flow will vary through a section
due to variations in heat of vaporization and molar enthalpy from stage to stage.

We will now show one way of deriving the constant molar flow assumption:

1. Chose the reference state (whier®) for each pure component as saturated
liquid at a reference pressure. This means that each component has a dif-
ferent reference temperature, namely its boiling pdl'r%( ) at the
reference pressure.

2. Assume that the column pressure is constant and equal to the reference
pressure.

3. Neglect any heat of mixing such that = zi X; ncPl_i(Tn—pri)
4. Assume that all components have the same molar heat capacity

5. Assume that the stage temperature can be approximated by
T, = éi_xi’nTb i- These assumptio_ns g_ivdaﬁn =0 onallstages and
the eql@tion (2.§9) for change in boilup is reduced to:

(2.60)

6. The molar enthalpy in the vapour phase is given as:

— vap vap .
th n- Zixi‘nApri + Zixi,nCPVi(Tn_pri) WhereApri is the

heat of vaporization for the pure component at its reference boiling temper-
ature (I'bloi ).

7. We assume thab,, is equal for all components, and then the second sum-

mation term above then will become zero, and we have:
vap

hV, n- Zixi,nApri :
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8. Then ifAH‘,S?,'iO = AH"®P s equal for all components we get

hV n = hV 1= AHvap, and thereby constant molar flows:
V,=V,_;andalsa, =L

n+1 -
At first glance, these assumptions may seem restrictive, but the assumption of
constant molar flows actually holds well for many industrial mixtures.

In a binary column where the last assumption about et}hﬁc/]a? is not fulfilled,
a good estimate of the change in molar flows from the bottom (sipigethe top
(stageN) for a case with saturated liquid feegiH1) and close to pure products, is
given by:V/V, :AHX'ap/AHKap . The molar heat of vaporization is taken at
the boiling point temperatures for the heavy (H) and light (L) components
respectively.

Recall that the temperature dependency of the relative volatility were related to
different heat of vaporization also, thus the assumptions of constant molar flows
and constant relative volatility are closely related.

2.6.2 Calculating Temperature when Using Relative Volatilities

It may look like that we have lost the pressure and temperature in the equilibrium

equation when we introduced the relative volatility. However, this is not the case

since the vapour pressure for every pure component is a direct function of temper-
ature, thus so is also the relative volatility. From the relationship

P = z p = in pP(T) we derive:

P = p?(T)inO(i (2.61)

Remember that only one &f or T can be specified when the mole fractions are
specified. If composition and pressure is known, a rigorous solution of the tem-
perature is found by solving the non-linear equation:

P=3x P (T) (2.62)

However, if we use the pure components boiling poifiig)( a crude and simple
estimate can be computed as:

T=3 %Ty (2.63)
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Figure 2.10: Temperature profile for the example in Figure 2.7 (solid line) compared with
various linear boiling point approximations.

For ideal mixtures, this usually give an estimate which is a bit higher than the real
temperature, however, similar approximation may be done by using the vapour
compositions ), which will usually give a lower temperature estimate. This
leads to a good estimate when we use the average of x and y, i.e:

.+ V.
T= Z g_' 5 yIBTbi (2.64)

Alternatively, if we are using relative volatilities we may find the temperature via
the vapour pressure of the reference component. If we use the Antoine equation,
then we have an explicit equation:

B
~ r o _
T~—-——6—-—-— +C, wherep, = P/z Xa; (2.65)
logp, — A, i
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This last expression is a very good approximation to a solution of the nonlinear
equation (2.62). An illustration of how the different approximations behave is

shown in Figure 2.10. For this particular case which is a fairly ideal mixture, equa-
tion (2.64) and (2.65) almost coincide.

In a rigorous simulation of a distillation column, the mass and energy balances
and the vapour liquid equilibrium (VLE) have to be solved simultaneously for all
stages. The temperature is then often used as an iteration parameter in order to
compute the vapour-pressures in VLE-computations and in the enthalpy compu-
tations of the energy balance.

2.6.3 Discussion and Caution

Most of the methods presented in this article are based on ideal mixtures and sim-
plifying assumptions about constant molar flows and constant relative volatility.
Thus there are may separation cases for non-ideal systems where these methods
cannot be applied directly.

However, if we are aware about the most important shortcomings, we may still
use these simple methods for shortcut calculations, for example, to gain insight or
check more detailed calculations.
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