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This is a revised version of an article published
in the Encyclopedia of Separation Science by Aca-
demic Press Ltd. (2000). The article gives some of
the basics of distillation theory and its purpose
is to provide basic understanding and some tools
for simple hand calculations of distillation col-
umns. The methods presented here can be used to
obtain simple estimates and to check more rigorous
computations.
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2.1 Introduction

Distillation is a very old separation technology for separating liquid mixtures t
can be traced back to the chemists in Alexandria in the first century A.D. To
distillation is the most important industrial separation technology. It is parti
larly well suited for high purity separations since any degree of separation ca
obtained with a fixed energy consumption by increasing the number of equ
rium stages.

To describe the degree of separation between two components in a column
a column section, we introduce the separation factor:

(2.1)

wherex denotes mole fraction of a component, subscriptL denotes light compo-
nent,H heavy component,T denotes the top of the section, andB the bottom.

It is relatively straightforward to derive models of distillation columns based
almost any degree of detail, and also to use such models to simulate the beha
on a computer. However, such simulations may be time consuming and often
vide limited insight. The objective of this article is to provide analytic
expressions that are useful for understanding the fundamentals of distillation
which may be used to guide and check more detailed simulations. Analy
expressions are presented for:

• Minimum energy requirement and corresponding internal flow
requirements.

• Minimum number of stages.

• Simple expressions for the separation factor.

The derivation of analytical expressions requires the assumptions of:

• Equilibrium stages.

• Constant relative volatility.

• Constant molar flows.

These assumptions may seem restrictive, but they are actually satisfied for m
real systems, and in any case the resulting expressions yield invalueable ins
also for systems where the approximations do not hold.

S
xL xH⁄( )

T

xL xH⁄( )
B

------------------------=
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2.2 Fundamentals

2.2.1 The Equilibrium Stage Concept

The equilibrium (theoretical) stage concept (see Figure 2.1) is central in dist
tion. Here we assume vapour-liquid equilibrium (VLE) on each stage and tha
liquid is sent to the stage below and the vapour to the stage above. For some t
columns this may be a reasonable description of the actual physics, but it is
tainly not for a packed column. Nevertheless, it is established that calculat
based on the equilibrium stage concept (with the number of stages adjusted a
priately) fits data from most real columns very well, even packed columns.

One may refine the equilibrium stage concept, for example by introducing b
mixing or a Murphee efficiency factor for the equilibrium, but these “fixes” ha
often relatively little theoretical justification, and are not used in this article.

For practical calculations, the critical step is usually not the modelling of
stages, but to obtain a good description of the VLE. In this area there has
significant advances in the last 25 years, especially after the introduction of e
tions of state for VLE prediction. However, here we will use simpler VLE mode
(constant relative volatility) which apply to relatively ideal mixtures.

2.2.2 Vapour-Liquid Equilibrium (VLE)

In a two-phase system (PH=2) withNc non-reacting components, the state is com
pletely determined byNc degrees of freedom (f), according to Gibb’s phase rule;

(2.2)

y

x

PT

Vapour phase

Liquid phase

Saturated vapour leaving the stage

Saturated liquid leaving the stage
with equilibrium mole fractionx

with equilibrium mole fractiony

and enthalpyhL(T,x)

and molar enthalpyhV(T,x)
Liquid entering the stage (xL,in,hL,in)

Vapour entering the stage (yV,in,hV,in)

Perfect mixing
in each phase

Figure 2.1: Equilibrium stage concept.

f Nc 2 P– H+=
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If the pressure (P) andNc-1 liquid compositions or mole fractions (x) are used as
degrees of freedom, then the mole fractions (y) in the vapour phase and the tem
perature (T) are determined, provided that two phases are present. The ge
VLE relation can then be written:

(2.3)

Here we have introduced the mole fractions x and y in the liquid an vapour ph

respectively, and we trivially have  and

In idealmixtures, the vapour liquid equilibrium can be derived from Raoult’s la
which states that the partial pressurepi of a component (i) in the vapour phase is
proportional to the saturated vapour pressure ( ) of the pure component. an
liquid mole fraction (xi):

(2.4)

Note that the vapour pressure is a function of temperature only. For an ideas
according to Dalton’s law, the partial pressure of a component is proportiona
the mole fraction times total pressure: , and since the total pressur

 we derive:

(2.5)

The following empirical formula is frequently used for computing the pure co
ponent vapour pressure:

(2.6)

The coefficients are listed in component property data bases. The case withd=e=0
is the Antoine equation.
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2.2.3 K-values and Relative Volatility

TheK-value for a componenti is defined as: . The K-value is some
times called the equilibrium “constant”, but this is misleading as it depen
strongly on temperature and pressure (or composition).

Therelative volatility between componentsi andj is defined as:

(2.7)

For ideal mixtures that satisfy Raoult’s law we have:

(2.8)

Here depends on temperature so the K-values will actually be cons
only close to the column ends where the temperature is relatively constant. O
other hand the ratio is much less dependent on temperature w
makes the relative volatility very attractive for computations. For ideal mixtur
a geometric average of the relative volatilities for the highest and lowest tem
ature in the column usually gives sufficient accuracy in the computatio

.

We usually select a common reference componentr (usually the least volatile or
“heavy” component), and define:

(2.9)

The VLE relationship (2.5) then becomes:

(2.10)

For a binary mixture we usually omit the component index for the light comp
nent, i.e. we writex=x1 (light component) andx2=1-x (heavy component). Then
the VLE relationship becomes:

(2.11)

Ki yi xi⁄=

αij

yi xi⁄( )
yj xj⁄( )

------------------
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K j
------= =

αij

yi xi⁄( )
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This equilibrium curve is illustrated in Figure 2.2:

The differencey-x determine the amount of separation that can be achieved o
stage. Large relative volatilities implies large differences in boiling points a
easy separation. Close boiling points implies relative volatility closer to unity
shown below quantitatively.

2.2.4 Estimating the Relative Volatility From Boiling Point Data

The Clapeyron equation relates the vapour pressure temperature depende
the specific heat of vaporization ( ) and volume change between liquid
vapour phase ( ):

(2.12)

Increasingα

Mole fraction of light
0 1

1

x

y

component in liquid phase

Mole fraction
of light

in vapour

α=1

component

phase

Mole fraction

Figure 2.2: VLE for ideal binary mixture:y
αx
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NTNU Dr. ing. Thesis 2001:43 Ivar J. Halvorsen



2.2 Fundamentals 33

n the
m

we

dif-
he

ing
If we assume an ideal gas phase and that the gas volume is much larger tha
liquid volume, then . Integration of Clapeyrons equation fro
temperatureTbi (boiling point at pressurePref) to temperatureT (at pressure )
then gives, when  is assumed constant:

(2.13)

This gives us the Antoine coefficients:

.

In most cases . For an ideal mixture that satisfies Raoult’s law
have  and we derive:

(2.14)

We see that the temperature dependency of the relative volatility arises from
ferent specific heat of vaporization. For similar values ( ), t
expression simplifies to:

(2.15)

Here we may use the geometric average also for the heat of vaporization:

(2.16)

This results in a rough estimate of the relative volatility , based on the boil
points only:

 where (2.17)
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If we do not know , a typical value  can be used for many case

Example:For methanol (L) and n-propanol (H), we have
and  and the heats of vaporization at their boiling point
are 35.3 kJ/mol and 41.8 kJ/mol respectively. Thus

 and .
This gives  and

 which is a bit lower than the experimental
value.

2.2.5 Material Balance on a Distillation Stage

Based on the equilibrium stage concept, a distillation column section is mode
as shown in Figure 2.3. Note that we choose to number the stages starting
the bottom of the column. We denoteLn andVn as the total liquid- and vapour
molar flow rates leaving stagen (and entering stagesn-1 andn+1, respectively).
We assume perfect mixing in both phases on a stage. The mole fraction of sp
i in the vapour leaving the stage withVn is yi,n, and the mole fraction inLn is xi,n.

The material balance for componenti at stagen then becomes (in [mol i/sec]):

(2.18)

∆H
vap β 13≈

TBL 337.8K=
TBH 370.4K=

TB 337.8 370.4⋅ 354K= = H
vap∆ 35.3 41.8⋅ 38.4= =

β ∆H
vap

RTB⁄ 38.4 8.83 354⋅( )⁄ 13.1= = =
α e13.1 32.6⋅ 354⁄ 3.34≈ ≈

Ln+1

LnVn-1

Vn

yn

xn

yn+1

xn+1

yn-1

xn-1
Stagen-1

Stagen

Stagen+1

Figure 2.3: Distillation column section modelled as a set of connected
equilibrium stages

wi,n

wi,n-1

td

dNi n, Ln 1+ xi n 1+, Vnyi n,–( ) Lnxi n, Vn 1– yi n 1–,–( )–=
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whereNi,n is the number of moles of componenti on stagen. In the following we
will consider steady state operation, i.e: .

It is convenient to define the net material flow (wi) of componenti upwards from
stagen to n+1 [mol i/sec]:

(2.19)

At steady state, this net flow has to be the same through all stages in a column
tion, i.e. .

The material flow equation is usually rewritten to relate the vapour composi
(yn) on one stage to the liquid composition on the stage above (xn+1):

(2.20)

The resulting curve is known as theoperatingline. Combined with the VLE rela-
tionship (equilibrium line) this enables us to compute all the stage composit
when we know the flows in the system. This is illustrated in Figure 2.4, and fo
the basis of the McCabe-Thiele approach.

dNi n, dt⁄ 0=

wi n, Vnyi n, Ln 1+ xi n 1+,–=

wi n, wi n 1+, wi= =

yi n,
Ln 1+

Vn
-------------xi n 1+,

1
Vn
------wi+=

xn-1

xn

xn

yn-1

yn

(2) Material balance

(1) VLE: y=f(x)

operating line
y=(L/V)x+w/V

Use (1)

Use (2)

(1)

(2)

x

y

Figure 2.4: Combining the VLE and the operating line to compute mole
fractions in a section of equilibrium stages.
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2.2.6 Assumption about Constant Molar Flows

In a column section, we may very often use the assumption about constant m
flows. That is, we assume [mol/s] and [mol/
s]. This assumption is reasonable for ideal mixtures when the components
similar molar heat of vaporization. An important implication is that the operat
line is then a straight line for a given section, i.e
This makes computations much simpler since the internal flows (L andV) do not
depend on compositions.

2.3 The Continuous Distillation Column

We here study the simple two-product continuous distillation column in Fig
2.5: We will first limit ourselves to a binary feed mixture, and the compone
index is omitted, so the mole fractions (x,y,z) refer to the light component. The
column hasN equilibrium stages, with the reboiler as stage number 1. The f
with total molar flow rateF [mol/sec] and mole fractionz enters at stageNF.

Ln Ln 1+ L= = Vn 1– Vn V= =

yi n, L V⁄( )xi n 1+, wi V⁄+=

F
z

q

D

B

xD

xB

Qr

Qc

Rectifying
section

Stripping
section

xF,yF

Condenser

Reboiler

LT

Stage 2

VTLT

Stage N

Feed stage NF

VBLB

Figure 2.5: An ordinary continuous two-product distillation column
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The section above the feed stage is denoted the rectifying section, or just th
section. Here the most volatile component is enriched upwards towards the d
late product outlet (D). The stripping section, or the bottom section, is below
feed, in which the least volatile component is enriched towards the bottoms p
uct outlet (B). The least volatile component is “stripped” out. Heat is supplied
the reboiler and removed in the condenser, and we do not consider any hea
along the column.

The feed liquid fractionq describes the change in liquid and vapour flow rates
the feed stage:

(2.21)

The liquid fraction is related to the feed enthalpy (hF) as follows:

(2.22)

When we assume constant molar flows in each section, we get the following
tionships for the flows:

(2.23)

2.3.1 Degrees of Freedom in Operation of a Distillation Column

With a given feed (F,z andq), and column pressure (P), we have only 2 degrees
of freedom in operation of the two-product column in Figure 2.5, independen
the number of components in the feed. This may be a bit confusing if we th
about degrees of freedom as in Gibb’s phase rule, but in this context Gibb’s
does not apply since it relates the thermodynamic degrees of freedom inside
gle equilibrium stage.

LF∆ qF=

VF∆ 1 q–( )F=

q
hV sat, hF–

H
vap∆

---------------------------

1> Subcooled liquid

1= Saturated liquid

0 q 1< < Liquid and vapour

0= Saturated vapour

0< Superheated vapour








= =

VT VB 1 q–( )F+=

LB LT qF+=

D VT LT–=

B LB VB–=
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This implies that if we know, for example, the reflux (LT) and vapour (VB) flow
rate in the column, all states on all stages and in both products are compl
determined.

2.3.2 External and Internal Flows

The overall mass balance and component mass balance is given by:

(2.24)

Herez is the mole fraction of light component in the feed, andxD andxB are the
product compositions. For sharp splits withxD≈ 1 andxB ≈ 0 we then have that
D=zF. In other words, we must adjust the product splitD/F such that the distillate
flow equals the amount of light component in the feed. Any deviation from t
value will result in large changes in product composition. This is a very import
insight for practical operation.

Example:Consider a column with z=0.5, xD=0.99, xB=0.01 (all these refer
to the mole fraction of light component) and D/F = B/F = 0.5. To simplif
the discussion set F=1 [mol/sec]. Now consider a 20% increase in the d
tillate D from 0.50 to 0.6 [mol/sec]. This will have a drastic effect on
composition. Since the total amount of light component available in th
feed is z = 0.5 [mol/sec], at least 0.1 [mol/sec] of the distillate must now b
heavy component, so the amount mole fraction of light component in 
distillate is now at its best 0.5/0.6 = 0.833. In other words, the amount
heavy component in the distillate will increase at least by a factor of 1
(from 1% to 16.7%).

Thus, we generally have that a change inexternal flows(D/F andB/F) has a large
effect on composition, at least for sharp splits, because any significant devia
in D/F from z implies large changes in composition. On the other hand, the ef
of changes in theinternal flows (L andV) are much smaller.

2.3.3 McCabe-Thiele Diagram

The McCabe-Thiele diagram wherey is plotted as a functionx along the column
provides an insightful graphical solution to the combined mass balance (“op
tion line”) and VLE (“equilibrium line”) equations. It is mainly used for binary
mixtures. It is often used to find the number of theoretical stages for mixtures w
constant molar flows. The equilibrium relationship (y as a functi
of x at the stages) may be nonideal. With constant molar flow, L and V are c
stant within each section and the operating lines (y as a function ofx between the
stages) are straight. In the top section the net transport of light compo

F D B+=

Fz DxD BxB+=

yn f xn( )=
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. Inserted into the material balance equation (2.20) we obtain the o
ating line for the top section. A similar expression is also derived for the bott
section:

(2.25)

A typical McCabe-Thiele diagram is shown in Figure 2.6:

The optimal feed stage is at the intersection of the two operating lines and the
stage composition (xF,yF) is then equal to the composition of the flashed feed m
ture. We have that . Forq=1 (liquid feed) we find
and forq=0 (vapour feed) we find . For other cases ofq we must solve
the equation together with the VLE.

At minimum reflux, a pinch zone, which is a zone of constant composition w
develop on both sides of the feed stage if it is optimally located.

w xDD=

Top: yn
L
V
---- 

 
T

xn 1+ xD–( ) xD+=

Bottom: yn
L
V
---- 

 
B

xn 1+ xB–( ) xB+=

0
1

1

xF

y

y=x

xDxB

yF

x

Top section operating line

VLE y=f(x)

ottom section
Optimal feed

Reboiler

Condenser

z

The intersection of the

Slope (LT/VT)

perating line
lope (LB/VB)

Slope q/(q-1)
along the “q-line”.

stage location

operating lines is found

Figure 2.6: McCabe-Thiele Diagram with an optimally located feed.

z qxF 1 q–( )yF+= xF z=
yF z=
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2.3.4 Typical Column Profiles— Not optimal feed location

An example of a column composition profile is shown in Figure 2.7 for a colu
with z=0.5, =1.5, N=40, NF=21 (counted from the bottom, including the
reboiler), yD=0.90, xB=0.002. This is a case were the feed stage is not optima
located. The corresponding McCabe-Thiele diagram is shown in Figure 2.8:
see that the feed stage is not located at the intersection of the two operating
and that there is a pinch zone above the feed, but not below.

Figure 2.7: Composition profile (xL,xH) for case with non-optimal feed location.
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Figure 2.8: McCabe-Thiele diagram for the same example as in Figure 2.7: Observe
the feed stage location is not optimal.

2.4 Simple Design Equations

2.4.1 Minimum Number of Stages— Infinite Energy

The minimum number of stages for a given separation (or equivalently, the m
imum separation for a given number of stages) is obtained with infinite inte
flows (infinite energy) per unit feed. This always holds for single-feed colum
and ideal mixtures, but may not hold, for example, for extractive distillation w
two feed streams.

With infinite internal flows (“total reflux”):Ln/F=∞ andVn/F=∞. A material bal-
ance across any part of the column givesVn = Ln+1 and similarly a material
balance for any component givesVn yn = Ln+1 xn+1. Thus;yn = xn+1, and with
constant relative volatility we have:
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(2.26)

For a column or column section withN stages, repeated use of this relation giv
directly Fenske’s formula for the overall separation factor:

(2.27)

For a column with a given separation, this yields Fenske’s formula for the m
mum number of stages:

(2.28)

These Fenske expressions do not assume constant molar flows and apply
separation between any two components with constant relative volatility. N
that although a high-purity separation (largeS) requires a larger number of stages
the increase is only proportional to thelogarithm of the separation factor. Fo
example, increasing the purity level in a product by a factor of 10 (e.g. by red
ing xH,D from 0.01 to 0.001) increasesNmin by about a factor of .

A common rule of thumb is to select the actual number of stages
even larger).

2.4.2 Minimum Energy Usage— Infinite Number of Stages

For a given separation, an increase in the number of stages will yield a redu
in the reflux (or equivalently in the boilup). However, as the number of sta
approach infinity, a pinch zone develops somewhere in the column, and the r
cannot be reduced further. For a binary separation the pinch usually occurs a
feed stage (where the material balance line and the equilibrium line will me
and we can easily derive an expression for the minimum reflux with . F
a saturatedliquid feed (q=1) we have King’s formula:

(2.29)

where is the recovery fraction of light component, and
of heavy component, both in the distillate. The value depends relatively we
on the product purity, and for sharp separations (where and

α
yL n,
yH n,
-----------

xL n,
xH n,
-----------⁄

xL n 1+,
xH n 1+,
-------------------

xL n,
xH n,
-----------⁄= =

S
xL

xH
------

 
 
 

T

xL

xH
------

 
 
 

B

⁄ αN= =

Nmin
Sln
αln

---------=

10ln 2.3=

N 2Nmin=

N ∞=

LTmin

rL D, αrH D,–

α 1–
----------------------------------F=

r L D, xDD z⁄ F= rH D,

r L D, 1=
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), we haveLmin= F/(α - 1). Actually, equation (2.29) applies withou
stipulating constant molar flows or constantα, but thenLmin is the liquid flow
entering the feed stage from above, andα is the relative volatility at feed condi-
tions. A similar King’s formula, but in terms of entering the feed sta
from below, applies for a saturatedvapour feed(q=0):

(2.30)

For sharp separations we get =F/(α - 1). In summary, for a binary mixture
with constant molar flows and constant relative volatility, the minimum boilup
sharp separations is:

(2.31)

Note that minimum boilup has a finite lower limit for sharp separations. From t
we establish one of the key properties of distillation:We can achieve any produc
purity (even “infinite separation factor”)with a constant finite energy(as long as
it is higher thanthe minimum) by increasing the number of stages.

Obviously, this statement does not apply to azeotropic mixtures, for whichα = 1
for some composition. However, we can get arbitrary close to the azeotropic c
position, and useful results may be obtained in some cases by treating
azeotrope as a pseudo-component and usingα for this pseudo-separation.

2.4.3 Finite Number of Stages and Finite Reflux

Fenske’s formulaS= αΝ applies to infinite reflux (infinite energy). To extend thi
expression to real columns with finite reflux we will assume constant molar flo
and consider below three approaches:

1. Assume constant K-values and derive the Kremser formulas (exact clos
the column end for a high-purity separation).

2. Assume constant relative volatility and derive the following extended F
ske formula (approximate formula for case with optimal feed stage
location):

rH D, 0=

VBmin

VBmin

rH B, αr L B,–

α 1–
---------------------------------F=

VBmin

Feed liquid, q=1: VBmin
1

α 1–
------------F D+=

Feed vapour, q=0: VBmin
1

α 1–
------------F=
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HereNT is the number of stages in the top section andNB in the bottom
section.

3. Assume constant relative volatility and derive exact expressions. The m
used are the Underwood formulas which are particularly useful for com
puting the minimum reflux (with infinite stages).

2.4.4 Constant K-values— Kremser Formulas

For high-purity separations most of the stages are located in the “corner” par
the McCabe-Thiele diagram where we according to Henry’s law may appr
mate the VLE-relationship, even for nonideal mixtures, by straight lines;

Bottom of column: yL = HLxL (light component;xL→ 0)

Top of column: yH = HH xH (heavy component;xH → 0)

whereH is Henry’s constant. For the case of constant relative volatility, Henr
constant in the bottom is and in the top is . Thus, with co
stant molar flows, both the equilibrium and mass-balance relationships are lin
and the resulting difference equations are easily solved analytically. For exam
at the bottom of the column we derive for the light component:

(2.33)

where is the stripping factor. Repeated use of this equat
gives the Kremser formula for stageNB from the bottom (the reboiler would here
be stage zero):

(2.34)

This assumes we are in the region where s is constant, i.e. .

At the top of the column we have for the heavy component:

(2.35)

S αN LT VT⁄( )
NT

LB VB⁄( )
NB

-----------------------------≈

HL α= HH 1 α⁄=

xL n 1+, VB LB⁄( )HLxL n, B LB⁄( )xL B,+=

sxL n, 1 VB– LB⁄( )xL B,+=

s VB LB⁄( )HL 1>=

xL NB, sNBxL B, 1 1 VB– LB⁄( ) 1 s N– B–( ) s 1–( )⁄+[ ]=

xL 0≈

yH n 1–, LT VT⁄( ) 1 HH⁄( )yH n, D VT⁄( )xH D,+=

ayH n, 1 LT VT⁄–( )xH D,+=
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where is the absorbtion factor. The correspondin
Kremser formula for the heavy component in the vapour phase at stageNT
counted from the top of the column (the accumulator is stage zero) is then:

(2.36)

This assumes we are in the region where a is constant, i.e. .
For hand calculations one may use the McCabe-Thiele diagram for the inte
diate composition region, and the Kremser formulas at the column ends wher
use of the McCabe-Thiele diagram is inaccurate.

Example.We consider a column with N=40, NF=21, =1.5, zL=0.5, F=1,
D=0.5, VB=3.2063. The feed is saturated liquid and exact calculations gi
the product compositions xH,D= xL,B=0.01.
We now want to have a bottom product with only 1 ppm heavy product,
xL,B = 1.e-6. We can use the Kremser formulas to easily estimate the a
tional stages needed when we have the same energy usage, VB=3.2063.
(Note that with the increased purity in the bottom we actually get B=0.49
and LB=3.7012). At the bottom of the column  and the
stripping factor is .
With xL,B=1.e-6 (new purity) and  (old purity) we find by
solving the Kremser equation (2.34) with respect to NB that NB=33.94, and
we conclude that we need about 34 additional stages in the bottom (th
not quite enough since the operating line is slightly moved and thus affe
the rest of the column; using 36 rather 34 additional stages compensa
for this).

The above Kremser formulas are valid at the column ends, but the linear app
imation resulting from the Henry’s law approximation lies above the real V
curve (is optimistic), and thus gives too few stages in the middle of the colu
However, if the there is no pinch at the feed stage, i.e. the feed is optim
located, then most of the stages in the column will be located at the columns
where the above Kremser formulas apply.

2.4.5 Approximate Formula with Constant Relative Volatility

We will now use the Kremser formulas to derive an approximation for the se
ration factor S. First note that for cases with high-purity products we h

That is, the separation factor is the inverse of the product
the key component product impurities.

a LT VT⁄( ) HH⁄ 1>=

yH NT, aNTxH D, 1 1 LT– VT⁄( ) 1 a N– T–( ) a 1–( )⁄+[ ]=

xH 0≈

α

HL α 1.5= =
s VB LB⁄( )HL 3.2063 3.712⁄( )1.5 1.2994= = =

xL NB, 0.01=

S 1 xL B, xH D,( )⁄≈
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We now assume that the feed stage is optimally located such that the compo
at the feed stage is the same as that in the feed, i.e.

Assuming constant relative volatility and using
, and (including

total reboiler) then gives:

(2.37)

where (2.38)

We know that S predicted by this expression is somewhat too large because
linearized VLE. However, we may correct it such that it satisfies the exact r
tionship at infinite reflux (where and c=1) by
dropping the factor (which as expected is always larger than 1).
finite reflux, there are even more stages in the feed region and the formula
further oversestimate the value of S. However, since c > 1 at finite reflux, we
partly counteract this by settingc=1. Thus, we delete the term c and arrive at th
final extended Fenske formula, where the main assumptions are that we have
stant relative volatility, constant molar flows, and that there is no pinch z
around the feed, i.e. the feed is optimally located (Skogestad’s formula):

(2.39)

where .

Together with the material balance, , this approximate fo
mula can be used for estimating the number of stages for column design (ins
of e.g. Gilliand plots), and also for estimating the effect of changes of inter
flows during column operation. However, its main value is the insight it provid

1. We see that the best way to increase the separationS is to increase the
number of stages.

2. During operation whereN is fixed, the formula provides us with the impor
tant insight that the separation factorS is increased by increasing the
internalflowsL andV, thereby makingL/V closer to 1. However, the effect
of increasing the internal flows (energy) is limited since the maximum s
aration with infinite flows is .

yH NT, yH F,=
xL NB, xL F,= HL α=
HH 1 α⁄= α yLF xLF⁄( ) yHF xHF⁄( )⁄= N NT NB 1+ +=

S αN
LT VT⁄( )NT

LB VB⁄( )NB
----------------------------- c

xHFyLF( )
------------------------≈

c 1 1
VB

LB
-------–

 
 
  1 s NB––( )

s 1–( )
-------------------------+ 1 1

LT

VT
-------–

 
 
  1 a NT––( )

a 1–( )
-------------------------+=

S αN= LB VB⁄ VT LT⁄ 1= =
1 xHFyLF( )⁄

S αN
LT VT⁄( )NT

LB VB⁄( )NB
-----------------------------≈

N NT NB 1+ +=

FzF DxD BxB+=

S αN=
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3. We see that the separation factorS depends mainly on the internal flows
(energy usage) and only weakly on the splitD/F. This means that if we
changeD/F thenS will remain approximately constant (Shinskey’s rule)
that is, we will get a shift in impurity from one product to the other suc
that the product of the impurities remains constant. This insight is very
useful.

Example.Consider a column with  (1% heavy in top) and
 (1% light in bottom). The separation factor is then approx

mately . Assume we increase D
slightly from 0.50 to 0.51. If we assume constant separation factor (Sh
key’s rule), then we find that  changes from 0.01 to 0.0236 (heav
impurity in the top product increases by a factor 2.4), and  chang
from 0.01 to 0.0042 (light impurity in the bottom product decreases by
factor 2.4). Exact calculations with column data: N=40, NF=21, =1.5,
zL=0.5, F=1, D=0.5, LT/F=3.206, gives that  changes from 0.01 to
0.0241 and changes from 0.01 to 0.0046 (separation factor chang
from S=9801 to 8706). Thus, Shinskey’s rule gives very accurate
predictions.

However, the simple extended Fenske formula also has shortcomings. First
somewhat misleading since it suggests that the separation may alway
improved by transferring stages from the bottom to the top section

. This is not generally true (and is not really “allowed” as
violates the assumption of optimal feed location). Second, although the form
gives the correct limiting value for infinite reflux, it overestimates th
value ofSat lower reflux rates. This is not surprising since at low reflux rate
pinch zone develops around the feed.

Example:Consider again the column with N=40. NF=21, =1.5, zL=0.5,
F=1, D=0.5; LT=2.706. Exact calculations based on these data give xHD=
xLB=0.01 and S = 9801. On the other hand, the extended Fenske form
with NT=20 and NB=20 yields:

corresponding to xHD= xLB = 0.0057. The error may seem large, but it is
actually quite good for such a simple formula.

2.4.6 Optimal Feed Location

The optimal feed stage location is at the intersection of the two operating line
the McCabe-Thiele diagram. The corresponding optimal feed stage compos
(xF, yF) can be obtained by solving the following two equation

xD H, 0.01=
xB L, 0.01=

S 0.99 0.99 0.01 0.01×( )⁄× 9801= =

xD H,
xB L,

α
xD H,

xB L,

LT VT⁄( ) VB LB⁄( )>

S αN=

α

S 1.541 2.7606 3.206⁄( )20

3.706 3.206⁄( )20
--------------------------------------------× 16586000

0.34
18.48
-------------× 30774= = =
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and . Forq=1 (liquid feed)
we find and for q=0 (vapour feed) we find (in the other cases
must solve a second order equation).

There exists several simple shortcut formulas for estimating the feed point l
tion. One may be derived from the Kremser equations given above. Divide
Kremser equation for the top by the one for the bottom and assume that the
is optimally located to derive:

(2.40)

The last “big” term is close to 1 in most cases and can be neglected. Rewriting
expression in terms of the light component then gives Skogestad’s shortcut
mula for the feed stage location:

(2.41)

whereyF andxF at the feed stage are obtained as explained above. The opt
feed stage location counted from the bottom is then:

(2.42)

whereN is the total number of stages in the column.

2.4.7 Summary for Continuous Binary Columns

With the help of a few of the above formulas it is possible to perform a colu
design in a matter of minutes by hand calculations. We will illustrate this wit
simple example.

We want to design a column for separating a saturated vapour mixture of
nitrogen (L) and 20% oxygen (H) into a distillate product with 99% nitrogen a
a bottoms product with 99.998% oxygen (mole fractions).

z qxF 1 q–( )yF+= yF αxF 1 α 1–( )xF+( )⁄=
xF z= yF z=

yH F,
xL F,
------------

xH D,
xL B,
------------α NT NB–( )

LT

VT
-------

 
 
  NT

VB

LB
-------

 
 
  NB
-------------------

1 1
LT

VT
-------–

 
 
  1 a NT––( )

a 1–( )
-------------------------+

1 1
VB

LB
-------–

 
 
  1 s NB––( )

s 1–( )
-------------------------+

---------------------------------------------------------------=

NT NB–

1 yF–( )
xF

--------------------
xB

1 xD–( )
--------------------

 
 
 

ln

αln
---------------------------------------------------------------=

NF NB 1+
N 1 NT NB–( )–+[ ]

2
---------------------------------------------------= =
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Component data: Normal boiling points (at 1 atm): TbL = 77.4K, TbH = 90.2K,
heat of vaporization at normal boiling points: 5.57 kJ/mol (L) and 6.82 kJ/m
(H).

The calculation procedure when applying the simple methods presented in
article can be done as shown in the following steps:

1. Relative volatility:

The mixture is relatively ideal and we will assume constant relative vola
ity. The estimated relative volatility at 1 atm based on the boiling points

 where

,  and

. This gives

and we find  (however, it is generally recommended to obtain
from experimental VLE data).

2. Product split:

From the overall material balance we get

.

3. Number of stages:

The separation factor is , i.e. lnS= 15.4.

The minimum number of stages required for the separation is
 and we select the actual number of stages 

 ( ).

4. Feed stage location

With an optimal feed location we have at the feed stage (q=0) thatyF = zF

= 0.8 and .

Skogestad’s approximate formula for the feed stage location gives

αln
∆Hvap

RTb
----------------

TbH TbL–( )

Tb
------------------------------≈

∆Hvap 5.57 6.82⋅ 6.16 kJ/mol= = Tb TbHTbL 83.6K= =

TH TL– 90.2 77.7– 18.8= = ∆Hvap( ) RTb( )⁄ 8.87=

α 3.89≈ α

D
F
----

z xB–

xD xB–
------------------ 0.8 0.00002–

0.99 0.00002–
------------------------------------ 0.808= = =

S
0.99 0.99998×
0.01 0.00002×
------------------------------------ 4950000= =

Nmin Sln αln⁄ 11.35= =

N 23= 2Nmin≈

xF yF α α 1–( )yF–( )⁄ 0.507= =
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5. Energy usage:

The minimum energy usage for a vapour feed (assuming sharp separa
is . With the choice

, the actual energy usage (V) is then typically about 10%
above the minimum (Vmin), i.e.V/F is about 0.38.

This concludes the simple hand calculations. Note again that the number of s
depends directly on the product purity (although only logarithmically), where
for well-designed columns (with a sufficient number of stages) the energy us
is only weakly dependent on the product purity.

Remark 1:

The actual minimum energy usage is slightly lower since we do not ha
sharp separations. The recovery of the two components in the bottom p
uct is  and

, so from the formulas given earlier the exac
value for nonsharp separations is

Remark 2:

For a liquid feed we would have to use more energy, and for a sharp
separation

Remark 3:

We can check the results with exact stage-by-stage calculations. With
N=23,NF=15 and =3.89 (constant), we findV/F = 0.374 which is about
13% higher thanVmin=0.332.

Remark 4:

A simulation with more rigorous VLE computations, using the SRK equ
tion of state, has been carried out using the HYSYS simulation packa
The result is a slightly lower vapour flow due to a higher relative volatilit

NT NB–
1 yF–( )

xF
--------------------

xB

1 xD–( )
--------------------

 
 
 

ln αln( )⁄=

0.2
0.507
------------- 0.00002

0.01
-------------------× 

  1.358⁄ln 5.27–= =

NF N 1 NT NB–( )–+[ ] 2⁄ 23 1 5.27+ +( ) 2⁄ 14.6 15≈= = =

Vmin F⁄ 1 α 1–( )⁄ 1 2.89⁄ 0.346= = =
N 2Nmin=

rH B, xH B, B( ) zFHF( )⁄ 0.9596= =
r L B, xL B, B( ) zFLF( )⁄ 0≈=

Vmin F⁄ 0.9596 0.0 3.89×–( ) 3.89 1–( )⁄ 0.332= =

Vmin F⁄ 1 α 1–( )⁄ D F⁄+ 0.346 0.808+ 1.154= = =

α
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( in the range from 3.99-4.26 with an average of 4.14). More precisely
simulation withN=23,NF=15 gaveV/F=0.291, which is about 11% higher
than the minimum value  found with a very large numbe
of stages (increasing N>60 did not give any significant energy reducti
below ). The optimal feed stage (withN=23) was found to beNF=15.

Thus, the results from HYSYS confirms that a column design based on the
simple shortcut methods is very close to results from much more rigor
computations.

2.5 Multicomponent Distillation — Underwood’s Method

We here present the Underwood equations for multicomponent distillation w
constant relative volatility and constant molar flows. The analysis is based on
sidering a two-product column with a single feed, but the usage can be exte
to all kind of column section interconnections.

It is important to note that adding more components does not give any additi
degrees of freedom in operation. This implies that for an ordinary two-prod
distillation column we still have only two degrees of freedom, and thus, we w
only be able to specify two variables, e.g. one property for each product. T
cally, we specify the purity (or recovery) of the light key in the top, and spec
the heavy key purity in the bottom (the key components are defined as the c
ponents between which we are performing the split). The recoveries for all o
components and the internal flows (L andV) will then be completely determined.

For a binary mixture with given products, as we increase the number of sta
there develops a pinch zone on both sides of the feed stage. For a multicomp
mixture, a feed region pinch zone only develops when all components distri
to both products, and the minimum energy operation is found for a particula
of product recoveries, sometimes denoted as the “preferred split”. If all com
nents do not distribute, the pinch zones will develop away from the feed st
Underwood’s methods can be used in all these cases, and are especially use
the case of infinite number of stages.

2.5.1 The Basic Underwood Equations

The net material transport (wi) of componenti upwards through a stagen is:

(2.43)

Note thatwi is constant in each column section. We assume constant molar fl
(L=Ln=Ln-1 and V=Vn=Vn+1), and assume constant relative volatility. The VL
relationship is then:

α

V'min 0.263=

V'min

wi Vnyi n, Ln 1+ xi n 1+,–=
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We divide equation (2.43) byV, multiply it by the factor , and take
the sum over all components:

(2.45)

The parameter is free to choose, and the Underwood roots are defined a
values of  which make the left hand side of (2.45) unity, i.e which satisfy

(2.46)

The number of values satisfying this equation is equal to the number of c
ponents,Nc.

Comment: Most authors use a product composition (x) or component recovery
(r) in this definition, e.g for the top (subscript T) section or the distillate prod
(subscript D):

(2.47)

but we prefer to use the net component molar flow (w) since it is more general.
Note that use of the recovery is equivalent to using net component flow, but
of the product composition is only applicable when a single product stream
leaving the column. If we apply the product recovery, or the product composit
the defining equation for the top section becomes:

(2.48)

yi

αi xi

αi xi
i

∑
-----------------= αi

yi xi⁄( )
yr xr⁄( )

-------------------=

αi αi φ–( )⁄

1
V
----

αiwi

αi φ–( )
-------------------

i
∑

αi
2
xi n,

αi φ–( )
-------------------

i
∑

αi xi n,
i

∑
---------------------------

L
V
----

αi xi n 1+,
αi φ–( )

----------------------
i

∑–=

φ
φ

V
αiwi

αi φ–( )
-------------------

i 1=

Nc

∑=

φ

wi wi T, wi D, Dxi D, r i D, ziF= = = =

VT

αi r i D, zi

αi φ–( )
--------------------F

i
∑

αi xi D,
αi φ–( )

-------------------D
i

∑= =
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2.5.2 Stage to Stage Calculations

By the definition of from (2.46), the left hand side of (2.45) equals one, and
last term of (2.45) then equals:

The terms with disappear in the nominator and can be taken outside
summation, thus (2.45) is simplified to:

(2.49)

This equation is valid for any of the Underwood roots, and if we assume cons
molar flows and divide an equation for with the one for , the followin
expression results:

(2.50)

Note the similarities with the Fenske and Kremser equations derived earlier.
relates the composition on a stage (n) to an composition on another stage (n+m).
The number of independent equations of this kind equals the number of Un
wood roots minus 1 (since the number of equations of the type as in equa
(2.49) equals the number of Underwood roots), but in addition we also h

. Together, this is a linear equation system for computing
when  is known and the Underwood roots is computed from (2.46).

Note that so far we have not discussed minimum reflux (or vapour flow rate),
these equation holds for any vapour and reflux flow rates, provided that the r
are computed from the definition in (2.46).

φ

αi
2
xi n,

αi φ–( )
-------------------

i
∑

αi xi n,
i

∑
--------------------------- 1–

αi
2
xi n,

αi φ–( )
------------------- αi xi n,–

 
 
 

i
∑

αi xi n,
i

∑
-----------------------------------------------------

αi
2
xi n, αi φ–( )α

i
xi n,–( )

αi φ–( )
-------------------------------------------------------------

i
∑

αi xi n,
i

∑
---------------------------------------------------------------------= =

αi
2 φ

L
V
----

αi xi n 1+,
αi φ–( )

----------------------
i

∑
φ

αi xi n,
αi φ–( )

-------------------
i

∑
αi xi n,

i
∑

------------------------------=

φk φ j

αi xi n m+,
αi φk–( )

-----------------------
i

∑
αi xi n m+,

αi φ j–( )
-----------------------

i
∑
-------------------------------

 
 
 
 
 
 

φk

φ j
-----

 
 
  m

αi xi n,
αi φk–( )

---------------------
i

∑
αi xi n,
αi φ j–( )

---------------------
i

∑
-----------------------------

 
 
 
 
 
 

=

xi∑ 1= xi n m+,
xi n,
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2.5.3 Some Properties of the Underwood Roots

Underwood showed a series of important properties of these roots for a two-p
uct column with a reboiler and condenser. In this case all components
upwards in the top section ( ), and downwards in the bottom sect
( ). The mass balance yields: where
Underwood showed that in the top section (withNc components) the roots ( )
obey:

(2.51)

In the bottom section (where ) we have a different set of roo
denoted ( ) computed from

(2.52)

which obey: (2.53)

Note that the smallest root in the top section is smaller than the smallest rel
volatility, and the largest root in the bottom section is larger then the largest
atility. It is easy to see from the defining equations that as

 and similarly as .

When the vapour flow is reduced, the roots in the top section will decrease, w
the roots in the bottom section will increase, but interestingly Underwood sho
that . A very important result by Underwood is that for infinite numb
of stages; .

Thus, at minimum reflux, the Underwood roots for the top ( ) and bottom (
sections coincide. Thus, if we denote these common roots , and recall

, and that we obtain the fol-
lowing equation for the “minimum reflux” common roots ( ) by subtracting th
defining equations for the top and bottom sections:

(2.54)

We denote this expression the feed equation since only the feed properties (q and
z) appear. Note that this is not the equation which defines the Underwood r
and the solutions ( ) apply as roots of the defining equations only for minim
reflux conditions ( ). The feed equation hasNc roots, (but one of these is

wi T, 0≥
wi B, 0≤ wi B, wi T, wi F,–= wi F, Fzi=

φ

α1 φ1 α2 φ2 α3 … αNc φNc> > >> > > >

wi n, wi B, 0≤=
ψ

VB

αiwi B,
αi ψ–( )

--------------------
i

∑
αi r i B,–( )ziF

αi ψ–( )
-------------------------------

i
∑

αi 1 ri D,–( )–( )ziF

αi ψ–( )
----------------------------------------------

i
∑= = =

ψ1 α>
1

ψ2 α2 ψ3 α3 … ψNc αNc> > >> > > >

VT ∞→ ⇒ φi αi→ VB ∞→ ⇒ ψi αi→

φi ψi 1+≥
V Vmin→ ⇒ φi ψi 1+→

φ ψ
θ

VT VB– 1 q–( )F= wi T, wi B,– wi F, ziF= =
θ

1 q–( )
αi zi

αi θ–( )
-------------------

i
∑=

θ
N ∞=
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not a common root) and theNc-1 common roots obey:
. Solution of the feed equation gives u

the possible common roots, but all pairs of roots ( ) for the top a
bottom section do not necessarily coincide for an arbitrary operating condit
We illustrate this with the following example:

Assume we start with a given product split (D/F) and a large vapour flow
(V/F). Then only one componenti (with relative volatility ) can be dis-
tributed to both products. No roots are common. Then we gradually red
V/F until an adjacent componentj=i+1  or j=i-1  becomes distributed. E.g
for j=i+1 one set of roots will coincide: , while the others
do not. As we reduceV/F further, more components become distributed
and the corresponding roots will coincide, until all components are dist
uted to both products, and then all theNc-1 roots from the feed equation
also are roots for the top and bottom sections.

An important property of the Underwood roots is that the value of a pair of ro
which coincide (e.g. when ) will not change, even if only on
two or all pairs coincide. Thus all the possible common roots are found by solv
the feed equation once.

2.5.4 Minimum Energy — Infinite Number of Stages

When we go to the limiting case of infinite number of stages, Underwoods’s eq
tions become very useful. The equations can be used to compute the mini
energy requirement for any feasible multicomponent separation.

Let us consider two cases: First we want to compute the minimum energy f
sharp split between twoadjacent key componentsj and j+1 ( and

). The procedure is then simply:

1. Compute the common root ( ) for which

from the feed equation:

2. Compute the minimum energy by applying the definition equation for

.

Note that the recoveries

α1 θ1 α2 θ2 … θNc 1– αNc> >> > > >
φi and ψi 1+

αi

φi ψi 1+ θi= =

φi ψi 1+ θi= =

r j D, 1=
r j 1 D,+ 0=

θ j α j θ j α j 1+> >

1 q–( )
aizi

ai θ–( )
------------------

i
∑=

θ j

VTmin

F
---------------

aizi

ai θ j–( )
--------------------

i 1=

j

∑=

r i D,
1 for i j≤
0 for i j>




=
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For example, we can derive Kings expressions for minimum reflux for a bin
feed ( , , , and liquid feed (q=1)). Con-
sider the case with liquid feed (q=1). We find the single common root from the
feed equation: , (observe as expected). T
minimum reflux expression appears as we use the defining equation with the
mon root:

(2.55)

and when we substitute for  and simplify, we obtain King’s expression:

(2.56)

Another interesting case is minimum energy operation when we consider s
split only between the most heavy and most light components, while all the in
mediates are distributed to both products. This case is also denoted the “pref
split”, and in this case there will be a pinch region on both sides of the feed st
The procedure is:

1. Compute all theNc-1 common roots ( )from the feed equation.

2. Set and solve the following linear equation se
with equations with respect to (
variables):

(2.57)

Note that in this case, when we regard the most heavy and light componen
the keys and all the intermediates are distributed to both products and Kings
simple expression will also give the correct minimum reflux for a multicomp
nent mixture (forq=1 or q=0). The reason is that the pinch then occurs at the fe
stage. In general, the values computed by Kings expression give a (conserv
upper boundwhen applied directly to multicomponent mixtures. An interestin

zL z= zH 1 z–( )= αL α αH, 1= =

θ α 1 α 1–( )z+( )⁄= α θ 1≥ ≥

LTmin

F
--------------

VTmin

F
--------------- D

F
----–

θr i D, zi

αi θ–( )
-------------------

i
∑

θr L D, z

α θ–
-----------------

θrH D, 1 z–( )
1 θ–

--------------------------------+= = =

θ

LTmin

F
--------------

r L D, αrH D,–

α 1–
----------------------------------=

θ

r1 D, 1 and rNc D, 0= =
Nc 1– VT r2 D, r3 D, …r Nc 1–, ,[ ] Nc 1–

VT

air i D, z
i

ai θ1–( )
---------------------

i 1=

Nc

∑=

•
•

VT

air i D, z
i

ai θNc 1––( )
-------------------------------

i 1=

Nc

∑=
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result which can be seen from Kings’s formula is that the minimum reflux at p
ferred split (forq=1) is independent of the feed composition and also independ
of the relative volatilities of the intermediates.

However, with the more general Underwood method, we also obtain the distr
tion of the intermediates, and it is easy to handle any liquid fraction (q) in the feed.

The procedure for an arbitrary feasible product recovery specification is sim
to the preferred split case, but then we must only apply the Underwood roots
corresponding equations) with values between the relative volatilities of the
tributing components and the components at the limit of being distributed
cases where not all components distribute, King’s minimum reflux express
cannot be trusted directly, but it gives a (conservative)upper bound.

Figure 2.9 shows an example of how the components are distributed to the p
ucts for a ternary (ABC) mixture. We choose the overhead vapour flow (V=VT)
and the distillate product flow (D=V-L) as the two degrees of freedom. Th
straight lines, which are at the boundaries when a component is at the lim
appearing/disappearing (distribute/not distribute) in one of the products, ca
computed directly by Underwood’s method. Note that the two peaks (PAB and
PBC) gives us the minimum vapour flow for sharp split between A/B and B/C. T
point PAC, however, is at the minimum vapour flow for sharp A/C split and th
occurs for a specific distribution of the intermediate B, known as the “prefer
split”.

Kings’s minimum reflux expression is only valid in the triangle below the pr
ferred split, while the Underwood equations can give all component recoverie
all possible operating points. The shaded area is not feasible since all liquid
vapour streams above and below the feed have to be positive.
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Figure 2.9: Regions of distributing feed components as function ofV andD for a feed
mixture with three components: ABC. Pij represent minimum energy for sharp spl
between componenti andj. For large vapour flow (above the top “saw-tooth”), only on
component distribute. In the triangle below PAC, all components distribute.

2.6 Further Discussion of Specific Issues

2.6.1 The Energy Balance and Constant Molar Flows

All the calculations in this article are based on the assumption of constant m
flows in a section, i.e and . This is a very
common simplification in distillation computations and we shall use the ene
balance to see when we can justify it. The energy balance is similar to the m
balance, but now we use the molar enthalpy (h) of the streams instead of compo
sition. The enthalpy is computed for the actual mixture and will be a function
composition in addition to temperature (or pressure). At steady state the en
balance around stagen becomes:

(2.58)

0 1

V/F

D/F

1-q

PAC

PAB
PBC

ABC

D

V L

V=D (L=0)

ABC

AB

ABC

A

BC

A

BC

AB

C

ABC

C

AB

BC

ABC

ABC

ABC

 “The preferred split”

Sharp A/BC split Sharp AB/C split

(sharp A/C split)

Infeasible region
V/F=(1-q)

F

Vn Vn 1– V= = Ln Ln 1+ L= =

LnhL n, Vn 1– hV n 1–,– Ln 1+ hL n 1+, VnhV n,–=
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Combining this energy balance with the overall material balance on a st
, whereW is the net total molar flow through a

section, i.e.W=D in the top section and -W=B in the bottom section) yields:

(2.59)

From this expression we observe how the vapour flow will vary through a sec
due to variations in heat of vaporization and molar enthalpy from stage to st

We will now show one way of deriving the constant molar flow assumption:

1. Chose the reference state (whereh=0) for each pure component as saturate
liquid at a reference pressure. This means that each component has a
ferent reference temperature, namely its boiling point ( ) at the
reference pressure.

2. Assume that the column pressure is constant and equal to the referen
pressure.

3. Neglect any heat of mixing such that .

4. Assume that all components have the same molar heat capacitycPL.

5. Assume that the stage temperature can be approximated by
. These assumptions gives on all stages an

the equation (2.59) for change in boilup is reduced to:

(2.60)

6. The molar enthalpy in the vapour phase is given as:

 where  is the

heat of vaporization for the pure component at its reference boiling tem
ature ( ).

7. We assume thatcPV is equal for all components, and then the second su
mation term above then will become zero, and we have:

.

Vn 1– Ln– Vn Ln 1+– W= =

Vn Vn 1–

hV n 1–, hL n,–

hV n, hL n 1+,–
------------------------------------ W

hL n, hL n 1+,–

hV n, hL n 1+,–
------------------------------------+=

Tbpi

hL n, xi n, cPLi Tn Tbpi–( )
i∑=

Tn xi n, Tbpii∑= hL n, 0=

Vn Vn 1–

hV n 1–,
hV n,

------------------=

hV n, xi n, Hbpi
vap∆

i∑ xi n, cPVi Tn Tbpi–( )
i∑+= Hbpi

vap∆

Tbpi

hV n, xi n, Hbpi
vap∆

i∑=
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8. Then if  is equal for all components we get

, and thereby constant molar flows:

 and also .

At first glance, these assumptions may seem restrictive, but the assumptio
constant molar flows actually holds well for many industrial mixtures.

In a binary column where the last assumption about equal is not fulfill
a good estimate of the change in molar flows from the bottom (stage1) to the top
(stageN) for a case with saturated liquid feed (q=1) and close to pure products, is
given by: . The molar heat of vaporization is taken
the boiling point temperatures for the heavy (H) and light (L) compone
respectively.

Recall that the temperature dependency of the relative volatility were relate
different heat of vaporization also, thus the assumptions of constant molar fl
and constant relative volatility are closely related.

2.6.2 Calculating Temperature when Using Relative Volatilities

It may look like that we have lost the pressure and temperature in the equilibr
equation when we introduced the relative volatility. However, this is not the c
since the vapour pressure for every pure component is a direct function of tem
ature, thus so is also the relative volatility. From the relationsh

 we derive:

(2.61)

Remember that only one ofP or T can be specified when the mole fractions a
specified. If composition and pressure is known, a rigorous solution of the t
perature is found by solving the non-linear equation:

(2.62)

However, if we use the pure components boiling points (Tbi), a crude and simple
estimate can be computed as:

(2.63)

Hbpi
vap∆ H

vap∆=

hV n, hV n 1–, H
vap∆= =

Vn Vn 1–= Ln Ln 1+=

Hbpi
vap∆

VN V1⁄ HH
vap∆ HL

vap∆⁄≈

P pi∑ xi pi
o T( )∑= =

P pr
o

T( ) xiαi
i

∑=

P xi pi
o

T( )∑=

T xiTbi∑≈
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For ideal mixtures, this usually give an estimate which is a bit higher than the
temperature, however, similar approximation may be done by using the va
compositions (y), which will usually give a lower temperature estimate. Th
leads to a good estimate when we use the average of x and y, i.e:

(2.64)

Alternatively, if we are using relative volatilities we may find the temperature
the vapour pressure of the reference component. If we use the Antoine equa
then we have an explicit equation:

 where (2.65)
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Figure 2.10: Temperature profile for the example in Figure 2.7 (solid line) compared
various linear boiling point approximations.
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This last expression is a very good approximation to a solution of the nonlin
equation (2.62). An illustration of how the different approximations behave
shown in Figure 2.10. For this particular case which is a fairly ideal mixture, eq
tion (2.64) and (2.65) almost coincide.

In a rigorous simulation of a distillation column, the mass and energy balan
and the vapour liquid equilibrium (VLE) have to be solved simultaneously for
stages. The temperature is then often used as an iteration parameter in or
compute the vapour-pressures in VLE-computations and in the enthalpy com
tations of the energy balance.

2.6.3 Discussion and Caution

Most of the methods presented in this article are based on ideal mixtures and
plifying assumptions about constant molar flows and constant relative volati
Thus there are may separation cases for non-ideal systems where these m
cannot be applied directly.

However, if we are aware about the most important shortcomings, we may
use these simple methods for shortcut calculations, for example, to gain insig
check more detailed calculations.
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