The NIT Jalandhar Lecture

30th October 2018

Throughput Manipulation: The Key to Robust Plantwide Control

Nitin Kaistha Chemical Engineering Indian Institute of Technology Kanpur

Outline

- About ChE@IITK
- Plantwide Control Basics
 - Why do we need a control system
 - The control system as variability transformer
 - Variability propagation around recycle loops
 - Control structure guideline for recycle loops
 - Throughput Manipulation
 - PWCS Exercise
 - PWCS Design Steps
- Example Case Studies
- Summary

India

Kanpur

IIT Kanpur

ChE@IITK

- 21 Faculty Members
- Programs
 - B Tech (4 yr) and Dual (5 yr)
 - ~80 freshmen each year
 - ~60 B Tech and ~20 Dual
 - M Tech (2 yr)
 - 20-25 join every year
 - PhD (4-6 yr)
 - ~15 join every year

ChE@IITK: Research

PWC Basics: A Simple Chemical Process

ENHANCES PROCESS PROFITABILITY

PWC Basics: Chemical Process Operation

Operate plant to meet production objectives 24X7

Production Objective Itself Can Change

Need PWC to drive accumulation of all independent inventories to zero

PWC Basics

- Regulatory Control System
 - Drives all inventory accumulation terms to zero
 - Ensures plant operation around a steady state
- What steady state to operate at
 - Economic Optimum
 - Minimize expensive utility consumption
 - Maximize production

Plantwide Control Hierarchy

Regulatory PWCS Design

• What to Control

- All independent inventories (DOF)
 - Material Liquid level or gas pressure
 - Energy Temperature or vapor pressure
 - Component Composition, tray temperature (inferential)
- Throughput or Production Rate
- Degree of tightness of control
 - Should energy inventories be tightly controlled?
 - Should surge level inventories be tightly controlled?
- What to manipulate
 - The largest term on the RHS of the inventory balance
 - Richardson's Rule
 - Pair close
 - Fast dynamics
 - Tight closed loop control

Control Structure Alternatives

PWCS Design: Key Points

- Location of through-put manipulator a key decision for inventory management
- Several alternative 'reasonable' plant-wide control structures
- Which one is the 'best'
- How do you bring method to the madness

The Transformation of Variability Perspective

Where to Transform Variability

- Surge level
 - Does not affect steady state
 - Regulate loosely for filtering out flow transients
- Energy Inventories
 - Regulate tightly to guarantee safety (rxn runaway?)
- Product quality
 - Regulate tightly
 - Minimize "free" product give-away
- Production rate
 - Often "loose" is OK (eg meet the monthly target)
- Recycle loop circulation rates
 - Regulate tightly
 - All equipment inside recycle loop see low variability
 - May need to let it float for overall balance closure

A Common Energy Recycle Loop

Temperature controller transforms energy balance variability out of recycle loop

Regulates energy recycled in FEHE

A Common Energy Recycle Loop

Temperature controller transforms energy balance variability out of recycle loop

Regulates energy recycled in FEHE

Material Recycle Snowball Effect

Material Recycle Snowball Effect

Key Guideline for Recycle Loops

- Structure the control system to transform variability out of the recycle loop
 - Hold what's going around the recycle loop
- Energy Recycle Loop
 - Hold a temperature inside the recycle loop
- Material Recycle Loop
 - Hold component rate(s) going around recycle loop
 - Material balance control structure brings in fresh component(s) that are recycled as make-up streams

More on Recycle Loops: Nonlinearity

Fixing the fresh feed rate of a recycled component is NOT a good idea

Possibility of overfeeding induced instability

PWC Basics: Throughput Manipulation

THROUGHOUT MANIPULATOR (TPM)

The setpoint adjusted to effect a change in production/processing rate

PWC Basics: TPM Selection

- When is TPM choice flexible
 - Large storage tanks supply the fresh feed(s)
 - Variability in storage tank level is acceptable
 - Allows structures that bring in fresh feed(s) as make-up
- Usually plant designs have large recycle rates
 - Design in the snowballing region
 - Capacity bottleneck then is likely inside the loop
- Where to locate the TPM
 - Inside the recycle loop
 - If multiple recycle loops, on a common branch
 - If bottleneck is known, AT the bottleneck

Key PWC Guidelines

- Configure control structure to transform recycle rate variability out of the recycle loop
- Provide control DOFs for fast "local" control
- "Pair" locally for fast control
- Choose TPM at bottleneck constraint to transform variability away from bottleneck
 - Almost always, bottleneck is inside the recycle loop

PWCS Design Exercise I

TPM at Fresh B Feed

PWCS Exercise I Continued

Beware of subtle plantwide recycle loop inventory drifts Stoichiometric feed balancing

Plantwide balances close slowly due to recycle

Always examine process input-output structure Every component must find a way out or get consumed (DOWNS' DRILL)

For (near) pure C product, $F_A = F_B$

PWCS Design Exercise I Continued

PWCS Design Exercise I Continued

TPM at Fresh B Feed

Other constraints (MV):

- Max. heating (Qbmax) -> give up p
- Max. column pressure drop (floowing)
- Max. cooling (Qcmax) -> min-sel. With Qb to F
- Max. heating reactor (Qrx)
- Other constraints (CV)
- Max. pressure (p) -> selector to Qb

NIT Jalandhar Lecture, Oct 30, 2018

- DOF:
- 1. Feed A
- 2. Feed B
- 3. Heat Qrx
- 4. Column feed F
- 5. Reflux L
- 6. Boilup V (Qb)
- 7. Bottoms B
- 8. Distillate (recycle) D
- 9. Cooling column (Qc)

Levels (2) that neeed to be contro

- Md
- Mb

Given (setpoint) (1): (can be given

- Feedrate
- Column pressure

Active constraints (3) :

- Max reactor volume
- Max reactor temperature
- Min. product purity xC (no giv

Product C

- Self-optimizing (2)
- A/B in feed

PWCS Design Exercise II

TPM at Product Stream: On Demand Operation

PWCS Design Exercise III

TPM Location Flexible: At Reactor Feed

PWCS Design Exercise IV

TPM Location Flexible: At Column Boil-up

Throughput Maximization Exercise I

Throughput Maximization Exercise II

NOT A LIKELY SCENARIO FOR ON-DEMAND STRUCTURES

Throughput Maximization Exercise III

Throughput Maximization Exercise IV

PWCS Design Steps

- DOF analysis and control objectives
 - Production rate
 - Product quality
 - Safety limits (eg UFL < gas loop composition < LFL)
 - Economic
- Choose TPM
 - Feed set by an upstream process
 - On demand operation (utility plants)
 - Flexible
 - Inside the recycle loop at the feed of the most non-linear/fragile unit
 - If bottleneck is known, at the bottleneck inside the recycle loop
- Design "local" loops for closing all independent material and energy balances around the TPM
 - Radiate outwards from the TPM
 - Check consistency of material / energy balance closure (Downs' Drill)
- Choose loop setpoints "wisely"
 - Usually governed by economic considerations

Case Study I: Ester Purification Process

Flowsheet Material Balances

Control Objective

- Operate plant to maximize ester production
- BOTTLENECK
 - Maximum water solvent rate to the extractor
 - Hydraulic constraint
 - Limits alcohol extraction capacity

Steady State Bifurcation Analysis

Fresh Water Rate = MAX

CS1: TPM at Bottleneck Feed

CS1: TPM at Bottleneck Feed

CS2: TPM at Fresh Feed

CS1 Closed Loop Transients

Large Feed Composition Change

NIT Jalandhar Lecture, Oct 30, 2018

CS2 Closed Loop Transients

Large Feed Composition Change

Throughout Maximization Results

CASE STUDY 2: Simple Recycle Process

BOTTLENECK CONSTRAINT Maximum Column Boilup

Maximum Throughput Results

NIT Jalandhar Lecture, Oct 30, 2018

Managing Unconstrained DOFs

up

Summary

- Key guideline for recycle system PWC
 - Structure control system to hold recycle rate by manipulating in / out streams in loop
- Holding a fresh feed rate constant is NOT a good idea
- Locate TPM at bottleneck inside recycle loop
- Economic considerations play a major role in regulatory control layer design
- Quantitative case study results
 - Significantly higher maximum achievable throughput with fresh feed as make-up stream
- COMMON SENSE MUST PREVAIL