# Examples of control structures used in chemical industry

Krister Forsman 2012-10-10





## Agenda

- Short presentation of the Perstorp group
- General about control applications in the specialty chemicals industry
- Examples of control structure improvements



## **The Perstorp group – short facts**

- Specialty chemicals company with focus on organic chemistry
  - Turn-over 2011: 11.3 GSEK
  - Owned by PAI Partners a French equity company.
  - 1500 employees
- Products: Mainly raw materials for other chemical industries
  - Additives in paints and coatings, plastic-processing and automotive industries
  - Thermoplastics, plasticizers, food and feed, solvents, bleaching agents, etc
    but also end products like feed additives and bio-diesel.



## Most important product groups

- Polyols: pentaerythritol, neopentylglycole, trimethylolpropane, di-penta, di-TMP
- **Esters:** caprolactone, di-propylheptylphthalate, RME ("bio diesel")
- Acids: octanoic acid, isophthalic acid, formic acid, propanoic acid, DMBA
- **Special polymers:** polycaprolactonepolyols, thermoplastics
- **Formates:** sodium-, potassium- and calcium formate, propionates
- Aldehydes: formaldehyde, iso- and normal butyric aldehyde
- Alcohols: butanol, octanol

More than 100 different chemicals, several thousand products





## **Eleven production sites**





## **Perstorp in the value chain**



### Many different types of processes to control

- Reactors
  - Tube reactors, tank reactors
  - Continuous, batch, semi-batch
- Heat exchangers
  - Liquid liquid, steam liquid
- Distillation columns
  - Continuous, batch
- Evaporators
- Stripper columns
- Crystallisers
- Centrifuges
- Filters
- Thickeners
- Dryers
- Scrubbers
- Boilers

In order to optimize controls you need to have good process knowledge!



#### **Control: What differs between different industries?**

- For mature processes, with a large installed base, there are standard solutions; often quite advanced.
- Examples:
  - Oil refineries (~800 world wide)
  - Paper machines (2000)
- For specialized processes, that are fairly unique, local expertise has to design the controls.
- Examples:
  - Caprolactone (<5 plants world-wide)</li>
  - Butyric aldehyde (<25)</li>
  - Pentaerythritol (<50)



## **Typical tasks for the control group**

- Improve productivity by decreased variation and increased automation.
  - Smarter control structures, e.g. feedforwards, mid-ranging, cascades, maximizing control, ratio-in-cascade
  - PID control parameter tuning
  - Introduce new controllers
  - Support in commissioning of new plants
  - Automatic control of buffer levels
  - Alarm management
- Process historian (database) ownership; applications and development
- Training seminars

## Ex: Level control with improvement opportunity



- The level in the tank varies too much, because there are pressure variations in the line for the incoming flow.
- We can't tune the controller more aggressively then it becomes unstable.
- Can we still improve control performance?



## **Solution: Control the flow too!**



#### = Cascade control



## Ex: Level control with improvement opportunity

- The level in the tank varies too much because of variations in output flow.
- We can't tune the controller more aggressively then it becomes unstable.
- Can we still improve control performance?





#### Feedforward: Give early information to the controller



Perstorp WINNING FORMULAS

## **Density control in a dissolver**



## Feedforward and PI tuning reduces variations





#### **Evaporator with poor level control**



K. Forsman, 2012-10-10, No. 17





WINNING FORMULAS

#### More stable level and smoother flow using cascade control

## **Sewer pH-control process**

There are two valves for feeding caustic to the pit: a small, accurate one, and a larger coarse valve.

![](_page_19_Picture_2.jpeg)

![](_page_19_Picture_3.jpeg)

## Solution: Mid-ranging (valve position control)

Let a pH-controller manipulate the small valve

![](_page_20_Picture_2.jpeg)

![](_page_20_Picture_3.jpeg)

## Block schedule for MR-control: Give setpoint for $u_1$

![](_page_21_Figure_1.jpeg)

![](_page_21_Picture_2.jpeg)

## pH control; Results

pH: Daily averages before and after new control structure

![](_page_22_Figure_2.jpeg)

![](_page_22_Picture_3.jpeg)

## **Improved pH-control gives fewer alarms**

![](_page_23_Figure_1.jpeg)

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

96% fewer alarms from this object.

![](_page_23_Picture_5.jpeg)

## **Reactor control; Residual oxygen**

- Process: Two phase oxidation reactor (aldehyde-oxygen)
  - On-line measurement of residual  $O_2$  in reactor gas; must be controlled.
  - Which different control structures are feasible, and what are their respective advantages?

![](_page_24_Figure_4.jpeg)

![](_page_24_Picture_5.jpeg)

#### Alternative 1: O<sub>2</sub>-feed in cascade against residual-O<sub>2</sub>

![](_page_25_Figure_1.jpeg)

![](_page_25_Picture_2.jpeg)

Alt 2:  $O_2$  feed in ratio against aldehyde, cascade against residual  $O_2$ 

![](_page_26_Figure_1.jpeg)

This structure is superior if aldehyde feed varies, e.g. during a start-up.

![](_page_26_Picture_3.jpeg)

#### Crystallizer: Level disturbance from wash sequence

- A crystallizer is automatically flushed with water, once every second hour. The water flow is large enough to affect level.
- It's important to keep a steady level.

![](_page_27_Figure_3.jpeg)

#### **Improvement suggestions?**

#### Crystallizer: Feedforward reduces level variations

- A FF from on-off-valve to level controller reduces level variations.
- Thus, it's ok to make a FF from a discrete (binary) variable.

![](_page_28_Figure_3.jpeg)

## **Smaller level variations in crystallizer**

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

#### Level in distillation column: What is the overall control objective?

![](_page_30_Figure_1.jpeg)

This flow is the feed to the next column (product column)

![](_page_30_Picture_3.jpeg)

## Exothermic reactor temperature control

The reactor solution is circulated through a heat exchanger (cooler). The reaction is very exothermic: it is important to control the temperature. Typical variations/disturbances: Cooling water header pressure, CW temperature

![](_page_31_Figure_2.jpeg)

## **New control structure: Power control**

![](_page_32_Figure_1.jpeg)

## Pressure and flow control in feed line

Requirements: Control flow and make sure that the booster pump does not cavitate If possible: Minimize pumping energy losses Manipulated variables: Valve position and main pump speed

![](_page_33_Figure_2.jpeg)

![](_page_33_Picture_3.jpeg)

## Is this possible?

![](_page_34_Figure_1.jpeg)

![](_page_34_Picture_2.jpeg)

## Is this possible?

![](_page_35_Figure_1.jpeg)

Minimize pumping energy losses by choosing PC setpoint as low as possible, without risking cavitation. Then the PV will be 100% open when possible.

![](_page_35_Picture_3.jpeg)

## **Evaporation proces: Ratio control issue**

Process: Evaporation. Increase solution concentration by evaporating water.

Solution feed flow is master, steam flow in ratio against feed.

![](_page_36_Picture_3.jpeg)

![](_page_37_Figure_0.jpeg)

![](_page_37_Picture_1.jpeg)

## **Disadvantage with this structure**

![](_page_38_Figure_1.jpeg)

K. Forsman, 2012-10-10, No. 39

## Same scenario: comparison feed – steam

![](_page_39_Figure_1.jpeg)

![](_page_39_Picture_2.jpeg)

## The ratio steam / solution not constant during SP-changes

![](_page_40_Figure_1.jpeg)

What should we do in order to reduce the deviation in ratio?

![](_page_40_Picture_3.jpeg)

## **Speed up steam flow controller! Result:**

![](_page_41_Figure_1.jpeg)

![](_page_41_Picture_2.jpeg)

![](_page_42_Figure_0.jpeg)

![](_page_42_Picture_1.jpeg)

## **Current control structure**

Is there a different structure that would reduce deviations even more?

![](_page_43_Figure_2.jpeg)

![](_page_43_Picture_3.jpeg)

## **Alternative structure**

The SP of the slave is calculated from master **SP** rather than master **PV**!

![](_page_44_Figure_2.jpeg)

What are the disadvantages of this scheme?

![](_page_44_Picture_4.jpeg)

## Test run: Ratio against SP

![](_page_45_Figure_1.jpeg)

![](_page_45_Picture_2.jpeg)

#### Example: Cooling capacity limited Rx; Normal operation

![](_page_46_Figure_1.jpeg)

![](_page_46_Picture_2.jpeg)

#### **Cooling capacity limitation; Maximizing control 1**

![](_page_47_Figure_1.jpeg)

![](_page_47_Picture_2.jpeg)

#### **Cooling capacity limitation; Maximizing control 2**

![](_page_48_Figure_1.jpeg)

![](_page_48_Picture_2.jpeg)

## **Example: HEX network optimization**

![](_page_49_Figure_1.jpeg)

![](_page_49_Picture_2.jpeg)

Self-optimizing control solves the problem

Controlled variable (invariant):  $(T_{12} - T_{11})^2 (T_{20} - T_{11}) - (T_{22} - T_{11})^2 (T_{10} - T_{11})$ 

Manipulated variable: The ratio of flow  $q_2$  to  $q_1 + q_2$ 

![](_page_50_Figure_3.jpeg)

#### Fuel – air – control for a steam boiler

Make sure that air is always in excess, both when load increases and decreases, while controlling both the steam pressure and the residual oxygen.

"Classical solution" = cross-limiting

![](_page_51_Figure_3.jpeg)

![](_page_52_Figure_0.jpeg)

## **Tools are centered around Matlab**

- The most important tools in the optimization work is Matlab and IP21.
- We have developed our own libraries for
  - Data collection from IP21
  - Data analysis
  - Simulation of controllers and control structures
  - Identification
  - Assessment of control performance
- Some examples of tools below

![](_page_53_Picture_9.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_55_Picture_1.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_56_Picture_1.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_57_Picture_1.jpeg)

![](_page_58_Figure_0.jpeg)

#### Process model structures supported by our Matlab library

![](_page_59_Figure_1.jpeg)

![](_page_59_Picture_2.jpeg)