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Classification of variables

Process
u

input (MV)
y

output (CV)

d

Independent variables (“the cause”):
(a) Inputs (MV, u): Variables we can adjust (valves)
(b) Disturbances (DV, d): Variables outside our control

Dependent (output) variables (“the effect or result”):
(c) Primary outputs (CV1, y1):  Variables we want to keep at a given setpoint 

(economics)
(d) Secondary outputs (CV2,y2): Extra outputs that we control to improve control 

(e.g., stabilizing loops)
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Plantwide control = 
Control structure design

• Not the tuning and behavior of each control loop,
• But rather the control philosophy of the overall plant with emphasis on the structural decisions:

– Selection of controlled variables (“outputs”)
– Selection of manipulated variables (“inputs”)
– Selection of (extra) measurements
– Selection of control configuration (structure of overall controller that interconnects the controlled,

manipulated and measured variables)
– Selection of controller type (LQG, H-infinity, PID, decoupler, MPC etc.).

• That is: Control structure design includes all the decisions we need make to get from ``PID
control’’ to “PhD” control



7
 

Main objectives control system

1. Economics: Implementation of acceptable (near-optimal) operation
2. Regulation: Stable operation 

ARE THESE OBJECTIVES CONFLICTING?

• Usually NOT
– Different time scales

• Stabilization fast time scale
– Stabilization doesn’t “use up” any degrees of freedom

• Reference value (setpoint) available for layer above
• But it “uses up” part of the time window (frequency range)
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Example of systems we want to operate optimally

• Process plant 
– minimize J=economic cost

• Runner 
– minimize J=time

• «Green» process plant
– Minimize J=environmental impact (with given economic cost)

• General multiobjective:
– Min J  (scalar cost, often $)
– Subject to satisfying constraints (environment, resources)

Optimal operation (economics)
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Theory: Optimal operation

Objectives

Present state

Model of system

Theory:
•Model of overall system
•Estimate present state
•Optimize all degrees of 
freedom

Problems: 
• Model not available
• Optimization complex
• Not robust (difficult to 
handle uncertainty) 
• Slow response time

Process control: 
• Excellent candidate for 
centralized control

(Physical) Degrees of freedom

CENTRALIZED
OPTIMIZER
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Practical operation: Hierarchical structure

Manager

Process engineer

Operator/RTO

Operator/”Advanced control”/MPC

PID-control

u = valves

Our Paradigm
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Translate optimal operation 
into simple control objectives:

What should we control?

CV1 = c ? (economics)

CV2 = ? (stabilization)
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Outline

• Skogestad procedure for control structure design
I Top Down 

• Step S1: Define operational objective (cost) and constraints
• Step S2: Identify degrees of freedom and optimize operation for disturbances
• Step S3: Implementation of optimal operation

– What to control ? (primary CV’s) (self-optimizing control)
• Step S4: Where set the production rate? (Inventory control)

II Bottom Up 
• Step S5: Regulatory control: What more to control (secondary CV’s) ?
• Step S6: Supervisory control
• Step S7: Real-time optimization
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Step S1. Define optimal operation (economics)

• What are we going to use our degrees of freedom (u=MVs) 
for?

• Typical cost function in process industry*:

• *No need to include fixed costs (capital costs, operators, maintainance) at ”our” time 
scale (hours)

• Note: J=-P where P= Operational profit

J = cost feed + cost energy – value products 
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Subject to Constraints:
Purity D: For example, xD, impurity ≤ max
Purity B: For example, xB, impurity ≤ max
Flow constraints: min ≤ D, B, L etc. ≤ max
Column capacity (flooding): V ≤ Vmax, etc.

• Optimal operation: Minimize J with respect to steady-state degrees of freedoms (inputs u)
• u = reflux L + heat input V

Example: distillation column
Cost J [$s] to be minimized (economics):

value products

cost energy (heating + cooling)

cost feed

J = - P   where  P = pD D + pB B – pF F – pVV
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Step S2. Optimize

(a) Identify degrees of freedom 
(b) Optimize for expected disturbances

• Need good model, usually steady-state
• Optimization is time consuming! But it is offline
• Main goal: Identify ACTIVE CONSTRAINTS
• A good engineer can often guess the active constraints
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Step S3: Implementation of optimal operation

• Have found the optimal way of operation. How should it be 
implemented?

• What to control ? (primary CV’s).
CV(c) = H y  
1.Active constraints
2.Self-optimizing variables (for unconstrained degrees of 

freedom)
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– Cost to be minimized, J=T
– One degree of freedom (u=power)
– What should we control?

Optimal operation - Runner

Optimal operation of runner
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1. Optimal operation of Sprinter

– 100m. J=T
– Active constraint control:

• Maximum speed (”no thinking required”)
• CV = power (at max)

Optimal operation - Runner



20
 

• 40 km. J=T
• What should we control? CV=?
• Unconstrained optimum

Optimal operation - Runner

2. Optimal operation of Marathon runner

u=power

J=T

uopt
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• Any self-optimizing variable (to control at 
constant setpoint)?

• c1 = distance to leader of race
• c2 = speed
• c3 = heart rate
• c4 = level of lactate in muscles

Optimal operation - Runner

Self-optimizing control: Marathon (40 km)
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Implementation: 
Feedback control of Marathon runner, J=T

c = heart rate

Simplest case:
select one measurement

• Simple and robust implementation
• Disturbances are indirectly handled by keeping a constant heart rate
• May have infrequent adjustment of setpoint (heart rate)

measurements

“Self-optimizing 
control:” Constant 
setpoints for c gives 
acceptable loss
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Definition of self-optimizing control

“Self-optimizing control is when we achieve acceptable loss (in comparison with truly optimal 
operation) with constant setpoint values for the controlled variables (without the need to reoptimize 
when disturbances occur).”

Reference: S. Skogestad, “Plantwide control: The search for the self-optimizing control structure'', 
Journal of Process Control, 10, 487-507 (2000).

Acceptable loss )
self-optimizing control
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• Operational objective: Minimize cost function J(u,d)
• The ideal “self-optimizing” variable is the gradient 

(first-order optimality condition) (Halvorsen and Skogestad, 1997; Bonvin et al., 2001; Cao, 2003):

• Optimal setpoint = 0
• BUT: Gradient can not be measured in practice
• Possible approach: Estimate gradient Ju based on 

measurements y

• Approach here: Look directly for c as a function of 
measurements y (c=Hy) without going via gradient

Ideal “Self-optimizing” variables 

Unconstrained degrees of freedom:

I.J. Halvorsen and S. Skogestad, ``Optimizing control of Petlyuk distillation: Understanding the steady-state behavior'', Comp. Chem. Engng., 21, S249-S254 (1997)
Ivar J. Halvorsen and Sigurd Skogestad, ``Indirect on-line optimization through setpoint control'', AIChE Annual Meeting, 16-21 Nov. 1997, Los Angeles, Paper 194h. .

u

cost J

Ju=0
Ju<0 Ju<0

uopt

Ju 0
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Unconstrained optimum: NEVER try 
to control the cost J (or a variable that 
reaches max or min at the optimum)
– In particular, never try to control directly the cost J
– Assume we want to minimize J (e.g., J = V = energy) - and we make the 

stupid choice os selecting CV = V  = J 
• Then setting J < Jmin: Gives infeasible operation (cannot meet constraints)
• and setting J > Jmin: Forces us to be nonoptimal (two steady states: may 

require strange operation) 

 

u

J

Jmin

J>Jmin

J<Jmin ?
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Unconstrained variables

H

measurement noise

steady-state
control error

disturbance

controlled 
variable

/ selection

Ideal: c = Ju
In practise: c = H y

c

J

copt
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Candidate controlled variables c
for self-optimizing control

Intuitive

1. The optimal value of c should be insensitive to disturbances

2. Optimum should be flat (to avoid sensitivity noise).
Equivalently: Value of c should be sensitive to degrees of freedom u.

• “Want large gain”, |G|
• Or more generally: Maximize minimum singular value,

Unconstrained optimum

BADGoodGood
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Optimal measurement combination

H

•Candidate measurements (y): Include also inputs u
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Linear measurement combinations, c = Hy

c=Hy is approximate gradient Ju

Two approaches

1. Nullspace method (HF=0): Simple but has limitations
– Need many measurements if many disturbances (ny = nu + nd)
– Does not handle measurement noise

2. Generalization: Exact local method
+  Works for any measurement set y
+  Handles measurement error / noise

+  

 

Unconstrained degrees of freedom
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Nullspace method

No measurement noise (ny=0)
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Amazingly simple!

Sigurd is told how easy it is to find H

Proof nullspace method
Basis: Want optimal value of c to be independent of disturbances 

• Find optimal solution as a function of d: uopt(d), yopt(d)
• Linearize this relationship: ∆yopt = F ∆d  
• Want: 
• To achieve this for all values of ∆ d: 

• To find a F that satisfies HF=0 we must require

• Optimal when we disregard implementation error (n)

V. Alstad and S. Skogestad, ``Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables'',
Ind.Eng.Chem.Res, 46 (3), 846-853 (2007).

No measurement noise (ny=0)
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Nullspace method (HF=0) gives Ju=0

• Proof. Appendix B in: Jäschke and Skogestad, ”NCO  tracking  and  self-optimizing  control  in  the  context  of  
real-time  optimization”, Journal of Process Control, 1407-1416 (2011)

Proof:

CV=Measurement combination
Alternative proof



42

Example. Nullspace Method for Marathon runner

u = power, d = slope [degrees]
y1 = hr [beat/min], y2 = v [m/s]

F = dyopt/dd = [0.25  -0.2]’
H = [h1 h2]]

HF = 0  -> h1 f1 + h2 f2 = 0.25 h1 – 0.2 h2 = 0
Choose h1 = 1 -> h2 = 0.25/0.2 = 1.25

Conclusion: c = hr + 1.25 v
Control c = constant -> hr increases when v decreases (OK uphill!)
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«Exact local method»
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H

Optimal H (“exact local method”): 
Problem definition
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( , ) ( , )opt optL J u d J u d= −

Loss evaluation (with measurement noise)

1/2 1 2 21 1
2 2( ( ) ) ( )y

wc uuL J HG HY Mσ σ−= =
Loss with c=Hym=0 due to
(i) Disturbances d
(ii) Measurement noise ny 

Book: Eq. (10.12)

31( , ) ( , ) ( ) ( ) ( )
2

T
opt u opt opt uu optJ u d J u d J u u u u J u u ζ= + − + − − +

1

[ ],d n
y y

uu ud d

Y FW W
F G J J G−

=

= −

'd

Controlled variables, c yH=

y
dG

cs = constant +

+

+

+

+

- K

H

yG ym

'yn

c

u

dW nW

u

J

( )opt ou d

Loss

d

optu

Proof: See handwritten notes
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1/2 1min ( )y
uu FH

J HG HY−
1. Kariwala: Can minimize 2-norm (Frobenius 

norm) instead of singular value
2. BUT seemingly Non-convex optimization 

problem (Halvorsen et al., 2003), see book 
p. 397

H
min HY F

st 
1/ 2y
uuHG J=

Improvement  (Alstad et al. 2009)

Analytical solution 

-1 -1 -1 1 -1
1 y 1 y y y (H G ) H = (DHG ) DH = (HG ) D DH = (HG ) H −

1H DH= D : any non-singular matrix
Have extra degrees of freedom

Convex 
optimization problem

Global solution 

- Do not need Juu
- Analytical solution applies when YYT has full rank (w/ meas. noise):

Optimal H (with measurement noise)
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Marathon runner: Exact local method

• Wd = 1, Wny = [1  0; 0  1]
• F = [0.25; -0.2]
• Y = [Wd*F  Wny ] 
• Gy = [2  1]'
• H = (inv(Y *Y')*Gy)'

• Get H =  [1.932   1.054]
• Or normalized H1 = D*H =  [1    0.55]

• Note: Gives same as nullspace when Wny is small

 

NEW
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Special cases

• No noise (ny=0, Wny=0): 
Optimal is HF=0 (Nullspace method)
• But: If many measurement then solution is not unique 

• No disturbances (d=0; Wd=0) + same noise for all measurements (Wny=I):
Optimal is HT=Gy (“control sensitive measurements”)
• Proof: Use analytic expression

'd

y
dG

cs = constant +

+

+
+

+
- K

H

yG y

'yn

c

u

dW nW



50

New 2024:

Nullspace method to estimate gradient

 
1

[ ],d n
y y

uu ud d

Y FW W
F G J J G−

=

= −
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Some references

S. Skogestad, ``Control structure design for complete chemical plants'', Computers and Chemical Engineering, 28 (1-2), 219-234 
(2004). 

V. Alstad and S. Skogestad, ``Null Space Method for Selecting Optimal Measurement Combinations as Controlled Variables'', 
Ind.Eng.Chem.Res, 46 (3), 846-853 (2007). 

V. Alstad, S. Skogestad and E.S. Hori, ``Optimal measurement combinations as controlled variables'', Journal of Process Control, 19, 138-
148 (2009)

Ramprasad Yelchuru, Sigurd Skogestad, Henrik Manum , MIQP formulation for Controlled Variable Selection in Self Optimizing Control 
IFAC symposium DYCOPS-9, Leuven, Belgium, 5-7 July 2010 

Download papers: Google ”Skogestad”
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Example: CO2 refrigeration cycle

Unconstrained DOF (u)
Control what? 
c=?

pH
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CO2 refrigeration cycle

Step 1. One (remaining) degree of freedom (u=z)
Step 2. Objective function. J = Ws (compressor work)
Step 3. Optimize operation for disturbances (d1=TC, d2=TH, d3=UA)

• Optimum always unconstrained

Step 4. Implementation of optimal operation
• No good single measurements (all give large losses):

– ph, Th, z, …
• Nullspace method: Need to combine nu+nd=1+3=4 measurements to have zero disturbance loss
• Simpler: Try combining two measurements. Exact local method:

– c = h1 ph + h2 Th = ph + k Th;   k = -8.53 bar/K
• Nonlinear evaluation of loss: OK! 
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Refrigeration cycle: Proposed control structure

Control c= “temperature-corrected high pressure”
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Conclusion optimal operation

ALWAYS:
1. Control active constraints and control them tightly!!

– Good times: Maximize throughput -> tight control of bottleneck

2. Identify “self-optimizing” CVs for remaining unconstrained degrees of freedom

• Use offline analysis to find expected operating regions and prepare control system for this!
– One control policy when prices are low (nominal, unconstrained optimum)
– Another when prices are high (constrained optimum = bottleneck)

ONLY if necessary: consider RTO on top of this
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