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where #%$�&('�)�*+#"$-,/. $-021 35426 &7'�)�* 426 ,/. $98;: (3.17)

Here the use of
'

(and not < ' ) as the argument of
#�$�&7'�)

and 426 &7'�) implies that these
are complex numbers, representing at each frequency

'
the magnitude and phase of

the sinusoidal signals in (3.13) and (3.14).
The overall response to simultaneous input signals of the same frequency in

several input channels is, by the superposition principle for linear systems, equal
to the sum of the individual responses, and we have from (3.16)

4 6 &('�)�*�= 67> & < '�)9# > &7'�)@?A= 6CB & < '�)D# B &7'�)@?�EFE/EG*IH $ = 6 $ & < '�)D# $ &('�) (3.18)

or in matrix form 4 &7'�)�*KJL& < '�)9#�&7'�) (3.19)

where #M&('�)�*ONPPPQ R;SUTWV�XR/YFTWV�X
...R[Z\T]V�X

^ ___` a2bdc 4 &7'�)�*ONPPPQ e SUT]V�Xe YFT]V�X
...e[f TWVgX

^ ___` (3.20)

represent the vectors of sinusoidal input and output signals.

Example 3.2 Consider a hjikh multivariable system where we simultaneously apply
sinusoidal signals of the same frequency l to the two input channels:monqpsr�tvu R S T]wxXR Y T]wxXzy t{u R Sx|~}���� TWVdw���� S XR Y�|~}���� TWVdw���� Y X/y (3.21)

The corresponding output signal is� nqpsr�t u e S TCwxXe Y TCwxX y t u e Sx|d}���� T]VdwG��� S Xe Y�|d}���� T]VdwG��� Y X y (3.22)

which can be computed by multiplying the complex matrix � nW� l r by the complex vector
mon l r :� n l r�t � nW� l r�mon l r�� � n l r�t u e Sx|U���D�F�e Y�|U���D�[� y�� mon l r�t u R Sx|[���9���R Y�|[���9�"� y (3.23)

3.3.2 Directions in multivariable systems

For a SISO system, 4 *+J�#
, the gain at a given frequency is simply� 4 &('�) �� #�&7'�) � * � JL& < '�)D#M&('�) �� #M&('�) � * � JL& < '�) �

The gain depends on the frequency
'

, but since the system is linear it is independent
of the input magnitude

� #�&7'�) �
.
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Things are not quite as simple for MIMO systems where the input and output

signals are both vectors, and we need to “sum up” the magnitudes of the elements
in each vector by use of some norm, as discussed in Appendix A.5.1. If we select
the vector 2-norm, the usual measure of length, then at a given frequency

'
the

magnitude of the vector input signal is� #�&7'�) � B *�� H $ � # $ &7'�) � B *�� # B >
	 ? # BB�	 ?+E/EFE
(3.24)

and the magnitude of the vector output signal is� 4 &('�) � B * � H 6 � 426 &7'�) � B *�� 4 B>
	 ? 4 BB�	 ?+EFE/E
(3.25)

The gain of the system
JL&�;)

for a particular input signal
#M&('�)

is then given by the
ratio � 4 &('�) � B� #�&7'�) � B * � JL& < '�)D#M&('�) � B� #�&7'�) � B *�� 4 B>
	 ? 4 BB�	 ?�EFE/E

� # B >
	 ? # BB�	 ?+E/E/E (3.26)

Again the gain depends on the frequency
'

, and again it is independent of the input
magnitude

� #�&7'�) � B . However, for a MIMO system there are additional degrees of
freedom and the gain depends also on the direction of the input

#
.1 The maximum

gain as the direction of the input is varied is the maximum singular value of
J

,

� a������ 	 � J�# � B� # � B * � a��� � � � � > � J�# � B *��� &xJ ) (3.27)

whereas the minimum gain is the minimum singular value of
J

,

��� b���� 	 � J�# � B� # � B * ��� b� � � � � > � J�# � B * � &�J ) (3.28)

The first identities in (3.27) and (3.28) follow because the gain is independent of the
input magnitude for a linear system.

Example 3.3 For a system with two inputs,
m t u R Sx|R Y�| y , the gain is in general different for

the following five inputs:m S t u �! y � m Y t u ! � y � m�"�t u !$# %&!'%!$# %&!'% y � m�(�t u !$# %&!'%) !$# %&!'% y � m+*�t u !$# ,) !$# - y
(which all have the same magnitude . m . Y t !

but are in different directions). For example,
for the h\i�h system � S t u0/21354 y (3.29)S

The term direction refers to a normalized vector of unit length.



����������	�
����������������
������������������������������������  ��

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

2

4

6

8

PSfrag replacements
���
���
�� �
���

m Y�|
	 m Sx|

�� n � S r t��� ���

� n � S r t���� h 
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(a constant matrix) we compute for the five inputs
m � the following output vectors� S t{u /3 y � � Y t{u 1 4 y � � "�tvu ,$# 30,3$# /&1 y � � (�t{u !$# %&!'%!$# %&!'% y � � *�t{u ) !$# 4!$# 4 y

and the 2-norms of these five outputs (i.e. the gains for the five inputs) are. � S . Y t����  �� � . � Y . Y t � � �  � . � " . Y t��� � � � . � ( . Y t ! � ��� � . � * . Y t���� h  
This dependency of the gain on the input direction is illustrated graphically in Figure 3.5
where we have used the ratio

m Y�|�	 m Sx|
as an independent variable to represent the input

direction. We see that, depending on the ratio
m Y�|
	 m Sx|

, the gain varies between
��� h  and�� ���

. These are the minimum and maximum singular values of � S , respectively.

3.3.3 Eigenvalues are a poor measure of gain

Before discussing in more detail the singular value decomposition we want to
demonstrate that the magnitudes of the eigenvalues of a transfer function matrix, e.g.� � 6 &xJL& < '�) � , do not provide a useful means of generalizing the SISO gain,

� JL& < '�) � .
First of all, eigenvalues can only be computed for square systems, and even then they
can be very misleading. To see this, consider the system 4 *KJ�#

withJ * u ! � !0!! ! y (3.30)

which has both eigenvalues
� 6 equal to zero. However, to conclude from the

eigenvalues that the system gain is zero is clearly misleading. For example, with
an input vector

# *�� ���
 "!
we get an output vector 4 *��#���$�%�� &!

.
The “problem” is that the eigenvalues measure the gain for the special case when

the inputs and the outputs are in the same direction, namely in the direction of the
eigenvectors. To see this let ' 6 be an eigenvector of

J
and consider an input

# *
' 6 .

Then the output is 4 *KJ
' 6 * � 6 ' 6 where

� 6 is the corresponding eigenvalue. We get� 4 �)( � # � * ��� 6 ' 6 �)( � ' 6 � * � � 6 �
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so
� � 6 � measures the gain in the direction ' 6 . This may be useful for stability analysis,

but not for performance.
To find useful generalizations of

� J �
for the case when

J
is a matrix, we need the

concept of a matrix norm, denoted
� J �

. Two important properties which must be
satisfied for a matrix norm are the triangle inequality� J > ? J B ����� J > � ? � J B � (3.31)

and the multiplicative property� J > J B ����� J > � E � J B � (3.32)

(see Appendix A.5 for more details). As we may expect, the magnitude of the largest
eigenvalue, � &xJ )�� � �����
	 &xJ ) �

(the spectral radius), does not satisfy the properties
of a matrix norm; also see (A.116).

In Appendix A.5.2 we introduce several matrix norms, such as the Frobenius norm� J ���
, the sum norm

� J ���� �
, the maximum column sum

� J � 6q> , the maximum row
sum

� J � 6�� , and the maximum singular value
� J � 6]B * �� &xJ ) (the latter three norms

are induced by a vector norm, e.g. see (3.27); this is the reason for the subscript � ).
Actually, the choice of matrix norm is not critical as they for a ����� matrix at most
differ by a factor � ��� , see (A.119)-(A.124. We will in this book use all of the above
norms, each depending on the situation. However, in this chapter we will mainly use
the induced 2-norm,

�� &�J ) . Notice that
�� &�J )�* �����

for the matrix in (3.30).

Exercise 3.5 Compute the spectral radius and the five matrix norms mentioned above for
the matrices in (3.29) and (3.30).

3.3.4 Singular value decomposition

The singular value decomposition (SVD) is defined in Appendix A.3. Here we are
interested in its physical interpretation when applied to the frequency response of a
MIMO system

JL& �;)
with � inputs and � outputs.

Consider a fixed frequency
'

where
JL& < '�) is a constant ����� complex matrix,

and denote
JL& < '�) by

J
for simplicity. Any matrix

J
may be decomposed into its

singular value decomposition, and we writeJ *����! #"
(3.33)

where�
is an �$�%� matrix with & * ��� b ' � 3 �)( non-negative singular values, � 6 , arranged

in descending order along its main diagonal; the other entries are zero. The
singular values are the positive square roots of the eigenvalues of

J " J
, whereJ "

is the complex conjugate transpose of
J

.� 6 &�J )�* � � 6 &�J " J ) (3.34)
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is an ����� unitary matrix of output singular vectors, � 6 , 
is an � � � unitary matrix of input singular vectors, � 6 ,

In short, any matrix may be decomposed into an input rotation
 

, a diagonal scaling
matrix

�
, and an output rotation

�
. This is illustrated by the SVD of a real

� � �
matrix which can always be written in the formJ * u���� }��/S ) }����	�/S}����
�[S ��� }��/S y� �� ��

u�� S !! � Y y� �� ��
u���� }��-Y � }������ Y) }������-Y�� ��� }�� Y y !� �� ����

(3.35)

where the angles � > and � B depend on the given matrix. From (3.35) we see that the
matrices

�
and

 
involve rotations and that their columns are orthonormal.

The singular values are sometimes called the principal values or principal gains,
and the associated directions are called principal directions. In general, the singular
values must be computed numerically. For

� � �
matrices however, analytic

expressions for the singular values are given in (A.36).

Caution. It is standard notation to use the symbol � to denote the matrix of output singular
vectors. This is unfortunate as it is also standard notation to use � (lower case) to represent the
input signal. The reader should be careful not to confuse these two.

Input and output directions. The column vectors of
�

, denoted � 6 , represent the
output directions of the plant. They are orthogonal and of unit length (orthonormal),
that is � � 6 � B * � � � 67> � B ? � � 6CB � B ? ��� � ? � � 6"! � B * �

(3.36)

�
"6 � 6 *�� 3 �

"6 �
$\* � 3 �$#

* < (3.37)

Likewise, the column vectors of
 

, denoted � 6 , are orthogonal and of unit length, and
represent the input directions. These input and output directions are related through
the singular values. To see this, note that since

 
is unitary we have

 "  *&%
, so

(3.33) may be written as
J� * �#�

, which for column � becomesJ
� 6 * � 6 � 6 (3.38)

where � 6 and � 6 are vectors, whereas � 6 is a scalar. That is, if we consider an input in
the direction � 6 , then the output is in the direction � 6 . Furthermore, since

� � 6 � B * �

and
� � 6 � B * �

we see that the � ’th singular value � 6 gives directly the gain of the
matrix

J
in this direction. In other words

� 6 &xJ )�* � J � 6 � B * � J � 6 � B� � 6 � B (3.39)

Some advantages of the SVD over the eigenvalue decomposition for analyzing gains
and directionality of multivariable plants are:
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1. The singular values give better information about the gains of the plant.
2. The plant directions obtained from the SVD are orthogonal.
3. The SVD also applies directly to non-square plants.

Maximum and minimum singular values. As already stated, it can be shown
that the largest gain for any input direction is equal to the maximum singular value�� &�J )�� � > &�J )�* � a������ 	 � J�# � B� # � B * � J � > � B� � > � B (3.40)

and that the smallest gain for any input direction (excluding the “wasted” inputs in
the nullspace of

J
for cases with more inputs than outputs2 ) is equal to the minimum

singular value � &�J )�� ��� &xJ )�* ��� b���� 	 � J�# � B� # � B * � J � � � B� � � � B (3.41)

where & * ��� b ' � 3 � ( . Thus, for any vector
#
, not in the nullspace of

J
, we have

that � &xJ ) � � J�# � B� # � B � �� &xJ ) (3.42)

Define � > * �
� 3 � > * �

� 3 � � * � and � �
*

� . Then it follows thatJ �
�
*��� �

� 3 J
�
* � � (3.43)

The vector
�
� corresponds to the input direction with largest amplification, and

�
� is the

corresponding output direction in which the inputs are most effective. The directions
involving

�
� and

�
� are sometimes referred to as the “strongest”, “high-gain” or “most

important” directions. The next most important directions are associated with � B and
� B , and so on (see Appendix A.3.5) until the “least important”, “weak” or “low-gain”
directions which are associated with � and � .

Example 3.3 continued. Consider again the system (3.29) with

� S t{u /21354 y (3.44)

The singular value decomposition of � S is

� S t{u !$# -'%&4 !$# 1�� !!$# 1�� ! ) !$# -'%&4 y� 	�
 �
u % # 3 1 3 !! !$# 4'%&4 y
� 	�
 ��

u !$# % �&1 ) !$# ,0!0-!$# ,0!0- !$# % �&1 y �� 	�
 ����

The largest gain of 7.343 is for an input in the direction
�� t u !$# % �&1!$# ,0!0- y . The smallest gain of

0.272 is for an input in the direction � t{u ) !$# ,0!0-!$# % �&1 y . This confirms the findings on page 82.Y
For a “fat” matrix � with more inputs than outputs ( ����� ), we can always choose a nonzero input

R
in the nullspace of � such that � R�� !

.
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Note that the directions in terms of by the singular vectors are not unique, in

the sense that the elements in each pair of vectors ( � 6 , � 6 ) may be multiplied by
a complex scalar � of magnitude 1 (

� � � * �
). This is easily seen from (3.38). For

example, we may change the sign of the vector
�
� (multiply by �

*
�
�
) provided we

also change the sign of the vector
�
� . Also, if you use Matlab to compute the SVD of

the matrix in (3.44) (g1=[5 4; 3 2 ]; [u,s,v]=svd(g1)), then you will
probably find that the signs of the elements in

�
and

 
are different from those

given above.
Since in (3.44) both inputs affect both outputs, we say that the system is

interactive. This follows from the relatively large off-diagonal elements in
J > .

Furthermore, the system is ill-conditioned, that is, some combinations of the inputs
have a strong effect on the outputs, whereas other combinations have a weak effect
on the outputs. This may be quantified by the condition number; the ratio between
the gains in the strong and weak directions; which for the system in (3.44) is� *��� ( � *�� � ����� (

� � � � � * � � � � .

Example 3.4 Shopping cart. Consider a shopping cart (supermarket trolley) with fixed
wheels which we may want to move in three directions; forwards, sideways and upwards.
This is a simple illustrative example where we can easily figure out the principal directions
from experience. The strongest direction, corresponding to the largest singular value, will
clearly be in the forwards direction. The next direction, corresponding to the second singular
value, will be sideways. Finally, the most “difficult” or “weak” direction, corresponding to
the smallest singular value, will be upwards (lifting up the cart).

For the shopping cart the gain depends strongly on the input direction, i.e. the plant is ill-
conditioned. Control of ill-conditioned plants is sometimes difficult, and the control problem
associated with the shopping cart can be described as follows: Assume we want to push the
shopping cart sideways (maybe we are blocking someone). This is rather difficult (the plant
has low gain in this direction) so a strong force is needed. However, if there is any uncertainty
in our knowledge about the direction the cart is pointing, then some of our applied force will
be directed forwards (where the plant gain is large) and the cart will suddenly move forward
with an undesired large speed. We thus see that the control of an ill-conditioned plant may be
especially difficult if there is input uncertainty which can cause the input signal to “spread”
from one input direction to another. We will discuss this in more detail later.

Example 3.5 Distillation process. Consider the following steady-state model of a
distillation column � t{u -'% # - ) -0,$# 1� !0-$# 4 ) � ! � # , y (3.45)

The variables have been scaled as discussed in Section 1.4. Thus, since the elements are much
larger than

!
in magnitude this suggests that there will be no problems with input constraints.

However, this is somewhat misleading as the gain in the low-gain direction (corresponding to
the smallest singular value) is actually only just above

!
. To see this consider the SVD of � :

� t u !$# ,04 / ) !$# %&- �!$# %&- � !$# ,04 / y� 	�
 �
u$� � % # 4 !! � # 3 � y� 	�
 ��

u !$# %&!'% ) !$# %&!0-) !$# %&!0- ) !$# %&!'% y �� 	�
 ����
(3.46)
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From the first input singular vector,

�� t�� !$# %&!'% ) !$# %&!0-���� , we see that the gain is
!�� �� h when

we increase one input and decrease the other input by a similar amount. On the other hand,
from the second input singular vector, � t�� ) !$# %&!0- ) !$# %&!'%�� � , we see that if we change both
inputs by the same amount then the gain is only

! � �	�
. The reason for this is that the plant is

such that the two inputs counteract each other. Thus, the distillation process is ill-conditioned,
at least at steady-state, and the condition number is

!
� �� h 	 ! � ��� t ! �2! � 
. The physics of this

example is discussed in more detail below, and later in this chapter we will consider a simple
controller design (see Motivating robustness example No. 2 in Section 3.7.2).

Example 3.6 Physics of the distillation process. The model in (3.45) represents two-
point (dual) composition control of a distillation column, where the top composition is to
be controlled at �� t���� ���

(output � S ) and the bottom composition at ��� t ��� � !
(output� Y ), using reflux L (input � S ) and boilup V (input � Y ) as manipulated inputs (see Figure 10.9

on page 452). Note that we have here returned to the convention of using � S and � Y to denote
the manipulated inputs; the output singular vectors will be denoted by

�� and � .
The

! � ! -element of the gain matrix � is
 ��  

. Thus an increase in � S by
!

(with � Y constant)
yields a large steady-state change in � S of

 ��  
, that is, the outputs are very sensitive to

changes in � S . Similarly, an increase in � Y by
!

(with � S constant) yields � S t��  �� � �
. Again,

this is a very large change, but in the opposite direction of that for the increase in � S . We
therefore see that changes in � S and � Y counteract each other, and if we increase � S and � Y
simultaneously by

!
, then the overall steady-state change in � S is only

 ��  �  � � � t ! � �
.

Physically, the reason for this small change is that the compositions in the distillation
column are only weakly dependent on changes in the internal flows (i.e. simultaneous changes
in the internal flows � and � ). This can also be seen from the smallest singular value,
� n � r�t ! � ���

, which is obtained for inputs in the direction � t u ) !$# %&!0-) !$# %&!'% y . From the output

singular vector � t u ) !$# %&- �!$# ,04 / y we see that the effect is to move the outputs in different

directions, that is, to change � S � � Y . Therefore, it takes a large control action to move the
compositions in different directions, that is, to make both products purer simultaneously. This
makes sense from a physical point of view.

On the other hand, the distillation column is very sensitive to changes in external flows (i.e.

increase � S � � Y t � � � ). This can be seen from the input singular vector
�� t u !$# %&!'%) !$# %&!0- y

associated with the largest singular value, and is a general property of distillation columns
where both products are of high purity. The reason for this is that the external distillate flow
(which varies as � � � ) has to be about equal to the amount of light component in the feed,
and even a small imbalance leads to large changes in the product compositions.

For dynamic systems the singular values and their associated directions vary with
frequency, and for control purposes it is usually the frequency range corresponding to
the closed-loop bandwidth which is of main interest. The singular values are usually
plotted as a function of frequency in a Bode magnitude plot with a log-scale for
frequency and magnitude. Typical plots are shown in Figure 3.6.
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(a) Spinning satellite in (3.85)
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(b) Distillation process in (3.90)

Figure 3.6: Typical plots of singular values

Non-Square plant

The singular value decomposition is also useful for non-square plants. For example,
consider a plant with 2 inputs and 3 outputs. In this case the third output singular
vector, �
	 , tells us in which output direction the plant cannot be controlled. Similarly,
for a plant with more inputs than outputs, the additional input singular vectors tell us
in which directions the input will have no effect.

Example 3.7 Consider a non-square system with 3 inputs and 2 outputs,

� Y t u&/21 �354 ) � y
with singular value decomposition

� Y t u !$# -'%0% !$# 1 - �!$# 1 - � ) !$# -'%0% y� 	�
 �
u % # 3 /&1 ! !! � # 30-'%5! y
� 	�
 ��

� !$# % � 4 ) !$# � , � !$# / -0-!$# ,0!0- !$# � 4 1 ) !$# %&- /!$# ! /&1 !$# � % � !$# � � ,�
�

� 	�
 �� �
From our definition, the minimum singular value is � n � Y r t ! � �z 

, but note that an input
m

in

the direction � "�t � !$# / -0-) !$# %&- /!$# � � ,� is in the nullspace of � and yields a zero output, � t � m t��
.

Exercise 3.6 For a system with � inputs and
!

output, what is the interpretation of the
singular values and the associated input directions ( � )? What is � in this case?

3.3.5 Singular values for performance

So far we have used the SVD primarily to gain insight into the directionality of
MIMO systems. But the maximum singular value is also very useful in terms of
frequency-domain performance and robustness. We here consider performance.
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For SISO systems we earlier found that

� � & < '�) � evaluated as a function of
frequency gives useful information about the effectiveness of feedback control. For
example, it is the gain from a sinusoidal reference input (or output disturbance) to
the control error,

� .�&('�) � (~� � &('�) � * � � & < '�) � .
For MIMO systems a useful generalization results if we consider the ratio� .�&('�) � B ( ��� &('�) � B , where

�
is the vector of reference inputs,

.
is the vector of control

errors, and
� E � B is the vector 2-norm. As explained above, this gain depends on the

direction of
� &('�)

and we have from (3.42) that it is bounded by the maximum and
minimum singular value of

�
,

� & � & < '�)D) � � .G&('�) � B��� &('�) � B � �� & � & < '�)D) (3.47)

In terms of performance, it is reasonable to require that the gain
� .G&('�) � B ( ��� &('�) � B

remains small for any direction of
� &7'�)

, including the “worst-case” direction which
gives a gain of

�� & � & < '�)D) . Let
� (d� ��� & < '�) � (the inverse of the performance weight)

represent the maximum allowed magnitude of
� . � B ( ��� � B at each frequency. This

results in the following performance requirement:�� & � & < '�)�)�� � (~� �	� & < '�) � 3�
 ' � �� & �	�� )�� � 3�
 '� ������� � � � �
(3.48)

where the � � norm (see also page 66) is defined as the peak of the maximum
singular value of the frequency response��� & �;) � � � � a��� �� & � & < '�)D) (3.49)

Typical performance weights
��� & �;)

are given in Section 2.7.2, which should be
studied carefully.

The singular values of
� & < '�) may be plotted as functions of frequency, as

illustrated later in Figure 3.10(a). Typically, they are small at low frequencies where
feedback is effective, and they approach 1 at high frequencies because any real
system is strictly proper:'��������\& < '�)�� � � � & < '�)�� %

(3.50)

The maximum singular value,
�� & � & < '�)�) , usually has a peak larger than 1 around

the crossover frequencies. This peak is undesirable, but it is unavoidable for real
systems.

As for SISO systems we define the bandwidth as the frequency up to which
feedback is effective. For MIMO systems the bandwidth will depend on directions,
and we have a bandwidth region between a lower frequency where the maximum
singular value,

�� & � ) , reaches 0.7 (the low-gain or worst-case direction), and a
higher frequency where the minimum singular value, � & � ) , reaches 0.7 (the high-
gain or best direction). If we want to associate a single bandwidth frequency for



����������	�
����������������
������������������������������������ �"!
a multivariable system, then we consider the worst-case (low-gain) direction, and
define

� Bandwidth,
' � : Frequency where

�� & � ) crosses
>� B * � � � from below.

It is then understood that the bandwidth is at least
' � for any direction of the input

(reference or disturbance) signal. Since
� * & % ? ��)�� >

, (A.53) yields

� & ��) � � � ��� & � ) � � & ��) ? �
(3.51)

Thus at frequencies where feedback is effective (namely where � & ��)�� �
) we have�� & � )�� � ( � & ��) , and at the bandwidth frequency (where

� ( �� & � & < ' � )D)L* � � *
� � � � ) we have that � & �\& < ' � )�) is between 0.41 and 2.41. Thus, the bandwidth is
approximately where � & ��) crosses 1. Finally, at higher frequencies where for any
real system � & ��) (and

�� & ��) ) is small we have that
�� & � )	� �

.

3.4 Control of multivariable plants








�� � � � 



�

��

�

4��
� 4+

+

J �
J�

-
+

�

+
+

�

#

Figure 3.7: One degree-of-freedom feedback control configuration

Consider the simple feedback system in Figure 3.7. A conceptually simple
approach to multivariable control is given by a two-step procedure in which we
first design a “compensator” to deal with the interactions in

J
, and then design a

diagonal controller using methods similar to those for SISO systems. This approach
is discussed below.


