
Chapter 5
The SIMC Method for Smooth PID Controller
Tuning

Sigurd Skogestad and Chriss Grimholt

5.1 Introduction

Although the proportional-integral-derivative (PID) controller has only three param-
eters, it is not easy, without a systematic procedure, to find good values (settings)
for them. In fact, a visit to a process plant will usually show that a large number
of the PID controllers are poorly tuned. The tuning rules presented in this chapter
have developed mainly as a result of teaching this material, where there are several
objectives:

1. The tuning rules should be well motivated, and preferably model-based and ana-
lytically derived.

2. They should be simple and easy to memorize.
3. They should work well on a wide range of processes.

In this paper the simple two-step SIMC procedure [11] that satisfies these objec-
tives is summarized:

Step 1. Obtain a first- or second-order plus delay model.
Step 2. Derive model-based controller settings. PI-settings result if we start from a

first-order model, whereas PID-settings result from a second-order model.

The SIMC method is based on classical ideas presented earlier by Ziegler and
Nichols [17], the IMC PID-tuning paper by Rivera et al. [8], and the closely related
direct synthesis tuning rules in the book by Smith and Corripio [13]. The Ziegler–
Nichols settings result in a very good disturbance response for integrating processes
but are otherwise known to result in rather aggressive settings [2, 15] and also to
give poor performance for processes with a dominant delay. On the other hand, the
analytically derived IMC-settings of Rivera et al. [8] are known to result in poor
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Fig. 5.1 Block diagram of
feedback control system. In
this chapter we consider an
input (“load”) disturbance
(gd = g)

disturbance response for integrating processes [3, 7] but are robust and generally
give very good responses for setpoint changes. The SIMC tuning rule presented in
this chapter works well for both integrating and pure time delay processes and for
both setpoints and load disturbances.

This chapter provides a summary of the original SIMC method and provides
some new results on obtaining the model from closed-loop data and on the Pareto-
optimality of the SIMC method. There is some room for improvement for delay-
dominant processes, and at the end of the chapter “improved” SIMC rules are pre-
sented.

The notation is summarized in Fig. 5.1. Here u is the manipulated input (con-
troller output), d the disturbance, y the controlled output, and ys the setpoint (refer-
ence) for the controlled output. g(s) = �y

�u
denotes the process transfer function, and

c(s) is the feedback part of the controller. Note that all the variables u, d , and y are
deviations from the initial steady state, but the � used to indicate deviation variables
is usually omitted. Similarly, the Laplace variable s is often omitted to simplify no-
tation. The settings given in this chapter are for the series (cascade, “interacting”,
classical) form PID controller:

Series PID: c(s) = Kc ·
(

τI s + 1

τI s

)
· (τDs + 1) = Kc

τI s

(
τI τDs2 + (τI + τD)s + 1

)
(5.1)

where Kc is the controller gain, τI the integral time, and τD the derivative time.
The reason for using the series form is that the PID rules with derivative action
are then much simpler. The corresponding settings for the ideal (parallel form) PID
controller are easily obtained using (5.30).

The following practical PID controller (series form) is used in the simulations:

u(s) = Kc

(
τI s + 1

τI s

)(
ys(s) − τDs + 1

(τD/N)s + 1
y(s)

)
(5.2)

with N = 10. Note that we in order to avoid “derivative kick,” do not differentiate
the setpoint in (5.2). In most cases we use PI-control, i.e., τD = 0, and the above
implementation issues and differences between series and ideal form do not apply.
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5.2 Model Approximation (Step 1)

The first step in the SIMC design procedure is to obtain an approximate first- or
second-order time delay model on the form

g1(s) = k

τ1s + 1
e−θs = k′

s + 1/τ1
e−θs, (5.3)

g2(s) = k

(τ1s + 1)(τ2s + 1)
e−θs . (5.4)

Thus, we need to estimate the following model information:

• Plant gain, k

• Dominant lag time constant, τ1
• (Effective) time delay (dead time), θ

• Optional: Second-order lag time constant, τ2 (for dominant second-order
process for which τ2 > θ , approximately)

Such data may be obtained in many ways, three of which are discussed below.

1. From open-loop step response
2. From closed-loop setpoint response with P-controller
3. From detailed model: Approximation of effective delay using the half rule

5.2.1 Model from Open-Loop Step Response

In practice, the model parameters for a first-order model are commonly obtained
from a step response experiment as shown in Fig. 5.2. From a theoretical point of
view this may not be the most effective method, but it has the advantage of being
very simple to use and interpret.

For plants with a large time constant τ1, one has to wait a long time for the
process to settle. Fortunately, it is generally not necessary to run the experiment for
longer than about 10 times the effective delay (θ ). At this time, one may simply
stop the experiment and either extend the response “by hand” toward settling or
approximate it as an integrating process (see Fig. 5.3),

ke−θs

τ1s + 1
≈ k′e−θs

s
(5.5)

where

• Slope, k′ def= k/τ1
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Fig. 5.2 Open-loop step response experiment to obtain parameters k, τ1, and θ in first-order
model (5.3)

Fig. 5.3 Open-loop step
response experiment to obtain
parameters k′ and θ in
integrating model (5.5)

is the slope of the integrating response. The reason is that for lag-dominant pro-
cesses, i.e., for τ1 > 8θ approximately, the individual values of the time constant
τ1 and the gain k are not very important for controller design. Rather, their ratio k′
determines the PI-settings, as is clear from the SIMC tuning rules presented below.

5.2.2 Model from Closed-Loop Setpoint Response

In some cases, open-loop responses may be difficult to obtain, and using closed-
loop data may be more effective. The most famous closed-loop experiment is the
Ziegler–Nichols where the system is brought to sustained oscillations by use of a P-
only controller. One disadvantage with the method is that the system is brought to its
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Fig. 5.4 Extracting information from closed-loop setpoint response with P-only controller

instability limit. Another disadvantage is that it does not work for a simple second-
order process. Finally, only two pieces of information are used (the controller gain
Ku and the ultimate period Pu), so the method cannot possibly work on a wide
range of first-order plus delay processes, which we know are described by three
parameters (k, τ1, θ ).

Yuwana and Seborg [16], and more recently Shamsuzzoha and Skogestad [10],
proposed a modification to the Ziegler–Nichols closed-loop experiment, which does
not suffer from these three disadvantages. Instead of bringing the system to its limit
of stability, one uses a P-controller with a gain that is about half this value, such that
the resulting overshoot (D) to a step change in the setpoint is about 30% (that is, D

is about 0.3).
We here describe the procedure proposed by Shamsuzzoha and Skogestad [10],

which seems to use the most easily available parameters from the closed-loop re-
sponse. The system should be at steady state initially, that is, before the setpoint
change is applied. Then, from the closed-loop setpoint response one obtains the
following parameters (see Fig. 5.4):

• Controller gain used in experiment, Kc0.
• Setpoint change, �ys .
• Time from setpoint change to reach first (maximum) peak, tp .
• Corresponding maximum output change, �yp .
• Output change at first undershoot, �yu.

This seems to be the information that is most easy (and robust) to observe di-
rectly, without having to record and analyze all the data before finding the parame-
ters. Also note that one may stop the experiment already at the first undershoot.
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The undershoot �yu is used to estimate the steady-state output change (at infinite
time) [10],

�y∞ = 0.45(�yp + �yu). (5.6)

Alternatively, if one has time to wait for the experiment to settle, one may record
�y∞ instead of �yu.

From this information one computes the relative overshoot and the absolute value
of the relative steady-state offset, defined by:

• Overshoot, D = �yp−�y∞
�y∞ .

• Steady-state offset, B = |�ys−�y∞
�y∞ |.

Shamsuzzoha and Skogestad [10] use this information to obtain directly the PI
settings. Alternatively, we may use a two-step procedure, where from Kc0,D,B ,
and tp we first obtain estimates for the parameters in a first-order plus delay model
(see the Appendix for details). We compute the parameters

A = 1.152D2 − 1.607D + 1,

r = 2A/B

and we obtain the following first-order plus delay model parameters from the closed-
loop setpoint response (Fig. 5.4):

k = 1/(Kc0B), (5.7)

θ = tp · (0.309 + 0.209e−0.61r
)
, (5.8)

τ1 = rθ. (5.9)

These values may subsequently be used with any tuning method, for example, the
SIMC PI rules. The closed-loop method may also be used for an unstable process,
provided that it can be approximated reasonably well by a stable first-order process.
The extension to unstable processes is the reason for taking the absolute value when
obtaining the steady-state offset B .

Example E2 ([11]) For the process

g0(s) = (−0.3s + 1)(0.08s + 1)

(2s + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3

the closed-loop setpoint response with P-only controller with gain Kc0 = 1.5 is
shown in Fig. 5.4. The following data is obtained from the closed-loop response

Kc0 = 1.5, �ys = 1, �yp = 0.79, tp = 4.4, �yu = 0.54
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Fig. 5.5 Open-loop response to step change in input u for process E2, g0(s) =
(−0.3s+1)(0.08s+1)

(2s+1)(1s+1)(0.4s+1)(0.2s+1)(0.05s+1)3 (solid line), and comparison with various approximations

and we compute

�y∞ = 0.5985, D = 0.32, B = 0.67, A = 0.6038, r = 1.80

which using (5.7)–(5.9) gives the following first-order with delay model approxi-
mation:

gcl : k = 0.994, θ = 1.67, τ1 = 3.00. (5.10)

This gives a good approximation of the open-loop step response, as can seen by
comparing the curves for g0 and gcl in Fig. 5.5. The approximation is certainly not
the best possible, but it should be noted that the objective is to use the model for
tuning, and the resulting difference in the tuning, and thus closed-loop response,
may be smaller than it appears by comparing the open-loop responses.

5.2.3 Approximation of Detailed Model Using Half Rule

Assume that we have a given detailed transfer function model in the form

g0(s) =
∏

j (−T inv
j0 s + 1)∏

i (τi0s + 1)
e−θ0s (5.11)

where all the given parameters are positive, and the time constants are ordered ac-
cording to their magnitudes. To approximate this with a first- or second-order time
delay model, (5.3) or (5.4), Skogestad [11] recommends that the “effective delay” θ
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is taken as the “true” delay θ0, plus the inverse response (negative numerator) time
constant(s) T inv, plus half of the largest neglected time constant (half rule), plus all
smaller time constant τi0. The “other half” of the largest neglected time constant is
added to get at larger time constant τ1 (or τ2 for a second-order model).

Half rule The largest neglected (denominator) time constant (lag) is dis-
tributed evenly to the effective delay (θ ) and the smallest retained time con-
stant (τ1 or τ2).

In summary, for a model in the form (5.11), to obtain a first-order model (5.3),
we use

τ1 = τ10 + τ20

2
; θ = θ0 + τ20

2
+

∑
i≥3

τi0 +
∑
j

T inv
j0 + h

2
(5.12)

and, to obtain a second-order model (5.4), we use

τ1 = τ10; τ2 = τ20 + τ30

2
; θ = θ0 + τ30

2
+

∑
i≥4

τi0 +
∑
j

T inv
j0 + h

2
(5.13)

where h is the sampling period (for cases with digital implementation).

Example E1 Using the half rule, the process

g0(s) = 1

(s + 1)(0.2s + 1)

is approximated as a first-order time delay process, g(s) = ke−θs+1/(τ1s + 1), with
k = 1, θ = 0.2/2 = 0.1, and τ1 = 1 + 0.2/2 = 1.1.

Example E2 (Continued) Using the half rule, the process

g0(s) = (−0.3s + 1)(0.08s + 1)

(2s + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3

is approximated as a first-order time delay process (5.3) with (g1)

τ1 = 2 + 1/2 = 2.5,

θ = 1/2 + 0.4 + 0.2 + 3 · 0.05 + 0.3 − 0.08 = 1.47

or a second-order time delay process (5.4) with (g2)

τ1 = 2,

τ2 = 1 + 0.4/2 = 1.2,

θ = 0.4/2 + 0.2 + 3 · 0.05 + 0.3 − 0.08 = 0.77.
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The small positive numerator time constant T0 = 0.08 was subtracted from the ef-
fective time delay according to rule T3 (see below). Both approximations, and in
particular the second-order model, are very good as can be seen by from the open-
loop step responses in Fig. 5.5. Note that with the SIMC tuning rules, a first-order
model yields a PI-controller, whereas a second-order model yields a PID controller.

Comment: In this case, we have τ2 > θ (1.2 > 0.77) for the second-order model,
and the use of PID control is expected to yield a significant performance improve-
ment compared to PI control (see below for details). However, adding derivative
action has disadvantages, such as increased input usage and increased noise sensi-
tivity.

5.2.4 Approximation of Positive Numerator Time Constants

A process model can also contain positive numerator time constants T0 as the fol-
lowing process:

g(s) = g0(s)
T0s + 1

τ0s + 1
. (5.14)

Skogestad [11] proposes to cancel out the numerator time constant T0 against a
“neighboring” lag time constant τ0 by the following rules:1

T0s + 1

τ0s + 1
≈

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T0/τ0 for T0 ≥ τ0 ≥ τc (Rule T1),

T0/τc for T0 ≥ τc ≥ τ0 (Rule T1a),
1 for τc ≥ T0 ≥ τ0 (Rule T1b),

T0/τ0 for τ0 ≥ T0 ≥ 5τc (Rule T2),
(τ̃0/τ0)

(τ̃0−T0)s+1 for τ̃0
def= min(τ0,5τc) ≥ T0 (Rule T3).

(5.15)

Here τc is the desired closed-loop time constant, which appears as the tuning
parameter in the SIMC PID rules. Because the tuning parameter is normally chosen
after obtaining the effective time delay (the recommended value for “tight control” is
τc = θ ), one may not know this value before the model is approximated. Therefore,
one may initially have to guess the value τc and iterate.

We normally select τ0 as the closest larger denominator time constant (τ0 > T0)
and use Rules T2 or T3. Note that an integrating process corresponds to a process
with an infinitely large time constant, τ0 = ∞. For example, for an integrating-
pole-zero (IPZ) process of the form k′ e−θs

s
T s+1
τ2s+1 , we get T s+1

s
≈ T (Rule T2 with

τ0 = ∞ > T ). However, if T is smaller than τ2, then we may use the approximation
T s+1
τ2s+1 ≈ T

τ2
(Rule T2 with τ2 > T > 5θ ). Rule T3 would apply if T was even smaller.

1The rules are slightly generalized compared to [11] by replacing θ (effective time delay in final
model) by τc (desired closed-loop time constant). This makes the rules applicable also to cases
where τc is selected to be different from θ .
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However, if there exists no larger τ0, or if there is smaller denominator time con-
stant “close to” T0, then we select τ0 as the closest smaller denominator time con-
stant (τ0 < T0) and use rules T1, T1a, or T1b. To define “close to” more precisely,
let τ0a (large) and τ0b (small) denote the two neighboring denominator constants
to T0. Then, we select τ0 = τ0b (small) if T0/τ0b < τ0a/T0 and T0/τ0b < 1.6 (both
conditions must be satisfied).

Derivations of the above rules and additional examples are given in [11].

5.3 SIMC PI and PID Tuning Rules (Step 2)

In step 2, we use the model parameters (k, θ, τ1, τ2) to tune the PID controller. We
here derive the SIMC rules and apply them to some typical processes.

5.3.1 Derivation of SIMC Rules

The SIMC rules may be derived using the method of direct synthesis for set-
points [13] or equivalently the Internal Model Control approach for setpoints [8].
For the system in Fig. 5.1, the closed-loop setpoint response is

y

ys

= g(s)c(s)

g(s)c(s) + 1
(5.16)

where we have assumed that the measurement of the output y is perfect. The idea
of direct synthesis is to specify the desired closed-loop response and solve for the
corresponding controller. From (5.16) we get

c(s) = 1

g(s)

1
1

(y/ys )desired
− 1

. (5.17)

We here consider the second-order time delay model g(s) in (5.4) and specify
that we, following the delay, desire a “smooth” first-order response with time con-
stant τc, (

y

ys

)
desired

= 1

τcs + 1
e−θs . (5.18)

The delay θ is kept in the “desired” response because it is unavoidable. Substituting
(5.18) and (5.4) into (5.17) gives a “Smith Predictor” controller [14]:

c(s) = (τ1s + 1)(τ2s + 1)

k

1

(τcs + 1 − e−θs)
(5.19)

τc is the desired closed-loop time constant and is the sole tuning parameter for the
controller. To derive PID settings, we introduce in (5.19) a first-order Taylor series
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approximation of the delay, e−θs ≈ 1 − θs. This gives

c(s) = (τ1s + 1)(τ2s + 1)

k

1

(τc + θ)s
(5.20)

which is a series form PID-controller (5.1) with [8, 13]

Kc = 1

k

τ1

τc + θ
= 1

k′
1

τc + θ
; τI = τ1; τD = τ2. (5.21)

These settings are derived by considering the setpoint response. However, it is
well known that for lag dominant processes with τ1 � θ (e.g., integrating pro-
cesses), the choice τI = τ1 results in a long settling time for input (“load”) dis-
turbances [3]. To improve the load disturbance response, one may reduce the in-
tegral time, but not by too much, because otherwise we get slow oscillations and
robustness problems. Skogestad [11] suggests that a good trade-off between distur-
bance response and robustness is obtained by selecting the integral time such that
we just avoid the slow oscillations, which with the controller gain given in (5.21)
corresponds to

τI = 4(τc + θ). (5.22)

5.3.2 Summary of SIMC Rules (Original)

For a first-order model

g1(s) = k

(τ1s + 1)
e−θs (5.23)

the SIMC method results in a PI controller with settings

Kc = 1

k

τ1

τc + θ
= 1

k′
1

τc + θ
, (5.24)

τI = min
{
τ1,4(τc + θ)

}
. (5.25)

The desired first-order closed-loop time constant τc is the only tuning parameter.

For a second-order model

g2(s) = k

(τ1s + 1)(τ2s + 1)
e−θs (5.26)
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the SIMC method results in a PID controller with settings (series form)

Kc = 1

k

τ1

τc + θ
= 1

k′
1

τc + θ
, (5.27)

τI = min
{
τ1,4(τc + θ)

}
, (5.28)

τD = τ2. (5.29)

Again, the desired first-order closed-loop time constant τc is the only tuning pa-
rameter. These PID settings are for the cascade (series) form in (5.1). The corre-
sponding settings for the ideal (parallel form) PID controller are easily obtained
using (5.30).

PID-control (with derivative action) is primarily recommended for processes
with dominant second order-dynamics, defined as having τ2 > θ , approximately.
We note that the derivative time is then selected so as to cancel the second-largest
process time constant.

In Table 5.1 we summarize the resulting tunings for a few special cases, including
the pure time delay process, integrating process, and double integrating process. The
double integrating process corresponds to a second-order process with τ2 = ∞, and
direct application of the rules actually yield a PD controller, so in Table 5.1 integral
action has been added to eliminate the offset for input disturbances.

Table 5.1 SIMC PID-settings (5.27)–(5.29) for some special cases of (5.4) (with τc as a tuning
parameter)

Process g(s) Kc τI τ
(5)
D

First-order, (5.3) k e−θs

(τ1s+1)
1
k

τ1
τc+θ

min{τ1,4(τc + θ)} –

Second-order, (5.4) k e−θs

(τ1s+1)(τ2s+1)
1
k

τ1
τc+θ

min{τ1,4(τc + θ)} τ2

Pure time delay(1) ke−θs 0 0(∗) –

Integrating(2) k′ e−θs

s
1
k′ · 1

(τc+θ)
4(τc + θ) –

Integrating with lag k′ e−θs

s(τ2s+1)
1
k′ · 1

(τc+θ)
4(τc + θ) τ2

Double integrating(3) k′′ e−θs

s2
1
k′′ · 1

4(τc+θ)2 4(τc + θ) 4(τc + θ)

IPZ process(4) k′ e−θs

s
T s+1
τ2s+1

1
k′T · τ2

τc+θ
min{τ2,4(τc + θ)} –

(1) The pure time delay process is a special case of a first-order process with τ1 = 0

(2) The integrating process is a special case of a first-order process with τ1 → ∞
(3) For the double integrating process, integral action has been added according to (5.22)

(4) For the integrating-pole-zero (IPZ) process, we assume that T > τ2. Then (T s +1)/s ≈ T (rule
T2) and the PI-settings follow

(5) The derivative time is for the series form PID controller in (5.1)

(∗) Pure integral controller c(s) = KI

s
with KI = Kc

τI
= 1

k(τc+θ)
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The choice of the tuning parameter τc is discussed in more detail below. If the
objective is to have “tight control” (good output performance) subject to having
good robustness, then the recommendation is to choose τc equal to the effective
time delay, τc = θ . The same recommendation for τc applies to both PI- and PID-
controls, but the actual controller settings will differ, because the effective delay θ

in a first-order model (PI control) will be larger than that in a second-order model
(PID control) of a given process.

Example E2 (Further continued) We want to derive PI- and PID-settings for the
process

g0(s) = (−0.3s + 1)(0.08s + 1)

(2s + 1)(1s + 1)(0.4s + 1)(0.2s + 1)(0.05s + 1)3

using the SIMC tuning rules with the “default” recommendation τc = θ . From the
closed-loop setpoint response, we obtained in a previous example a first-order model
with parameters k = 0.994, θ = 1.67, τ1 = 3.00 (5.10). The resulting SIMC PI-
settings with τc = θ = 1.67 are

PIcl : Kc = 0.904, τI = 3.

From the full-order model g0(s) and the half rule, we obtained in a previous ex-
ample a first-order model with parameters k = 1, θ = 1.47, τ1 = 2.5. The resulting
SIMC PI-settings with τc = θ = 1.47 are

PIhalf-rule : Kc = 0.850, τI = 2.5.

From the full-order model g0(s) and the half rule, we obtained a second-order model
with parameters k = 1, θ = 0.77, τ1 = 2, τ2 = 1.2. The resulting SIMC PID-settings
with τc = θ = 0.77 are

Series PID : Kc = 1.299, τI = 2, τD = 1.2.

The corresponding settings with the more common ideal (parallel form) PID con-
troller are obtained by computing f = 1 + τD/τI = 1.60, and we have

Ideal PID : K ′
c = Kcf = 1.69, τ ′

I = τI f = 3.2, τ ′
D = τD/f = 0.75.

(5.30)
The closed-loop responses for the three controllers to a setpoint change at t = 0 and
an input (load) disturbance at t = 10 is shown in Fig. 5.6. The responses for the two
PI controllers are very similar, as expected. The PID controller shows better output
performance (upper plot), especially for the disturbance, but it may not be sufficient
to outweigh the increased input usage (lower plot) and increased sensitivity to noise
(not shown in plot).
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Fig. 5.6 Closed-loop responses for process E2 using SIMC PI- and PID-tunings with τc = θ .
Setpoint change at t = 0 and input (load) disturbance at t = 10. For the PID controller, D-action is
only on the feedback signal, i.e., not on the setpoint ys

5.4 Choice of Tuning Parameter τc

The value of the desired closed-loop time constant τc can be chosen freely, but from
(5.27) we must have −θ < τc < ∞ to get a positive and nonzero controller gain.
The optimal value of τc is determined by a trade-off between:

1. Output performance (tight control): Fast speed of response and good distur-
bance rejection (favored by a small value of τc). This “tightness” can be quan-
tified by the magnitude of the setpoint error, |y(t) − ys(t)|, which should be as
small as possible. Here, one may consider different “norms” of the error, for
example, the maximum deviation (∞-norm), the integrated square deviation (2-
norm) and the integrated absolute error (IAE) (1-norm),

IAE =
∫ ∞

0

∣∣y(t) − ys(t)
∣∣dt.

2. Robustness (smooth control): Good robustness, small input changes, and small
noise sensitivity (favored by a large value of τc). The “smoothness” is here quan-
tified by the peak value Ms ≥ 1 of the frequency-dependent sensitivity function,
S = 1/(1 + gc). In terms of robustness, 1/Ms is the closest distance of the loop
transfer function gc to the critical (−1)-point in the Nyquist diagram, so Ms
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should be as small as possible. Notice that Ms < 1.7 guarantees gain margin
(GM) > 2.43 and phase margin (PM) > 34.2◦ [8].

In general, we have a multiobjective optimization problem, so there is no value of τc

which is “optimal.” We will consider in more detail the two limiting cases of “tight”
and “smooth” control and also consider in some detail the required input usage.

5.4.1 Tight Control

With tight control, the primary objective is to keep the output close to its setpoint,
but there should be some minimum requirement in terms of robustness and smooth-
ness. A good trade-off is obtained by choosing τc equal to the time delay:

Tuning parameter τc. SIMC-recommendation for “tight control,” or more
precisely “tightest possible subject to maintaining smooth control”:

τc = θ. (5.31)

The choice τc = θ gives a reasonably fast response with moderate input usage
and a good robustness with Ms about 1.6 to 1.7. More specifically, the robustness
margins with the SIMC PID-settings in (5.27)–(5.29) and τc = θ , when applied to
first- or second-order time delay processes, are always between the values given by
the two columns in Table 5.2. The values in the left column in Table 5.2 apply to a
case with a relatively small lag time constant (so τI = τ1), and the somewhat less
robust values in the right column apply to an integrating process (so τI = 4(τc +
θ) = 8θ ). For the integrating process, we reduce the integral time relative to the
original value of τI = τ1 to get better output performance for load disturbances, and
not surprisingly we have to “pay” for this in terms of less robustness.

To be more specific, for processes with a relatively small time constant where
we use τI = τ1 (left column), the system always has a gain margin GM = 3.14
and phase margin PM = 61.4◦, which is much better than the typical minimum
requirements GM > 1.7 and PM > 30◦ [9]. The sensitivity and complementary
sensitivity peaks are Ms = 1.59 and Mt = 1.00 (here small values are desired
with a typical upper bound of 2). The maximum allowed time delay error is
�θ/θ = PM [rad]/(wc · θ), which in this case gives �θ/θ = 2.14 (i.e., the system
goes unstable if the time delay is increased from θ to (1 + 2.14)θ = 3.14θ ).

For an integrating processes (right column) and τI = 8θ , the suggested “tight”
settings give GM = 2.96, PM = 46.9◦, Ms = 1.70, and Mt = 1.30, and the maxi-
mum allowed time delay error is �θ = 1.59θ .

The simulated time responses to setpoint changes and disturbances with SIMC-
settings are shown for five cases in Fig. 5.7 [11]. Even though these are for the
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Table 5.2 “Tight” settings:
Robustness margins for
first-order and integrating
time delay process for
SIMC-rules (5.24)–(5.25)
with τc = θ . The same
margins apply to a
second-order process (5.4) if
we choose τD = τ2 in (5.29)

Process g(s) k
τ1s+1 e−θs k′

s
e−θs

Controller gain, Kc (τc = θ) 0.5
k

τ1
θ

0.5
k′ 1

θ

Integral time, τI τ1 8θ

Gain margin (GM) 3.14 2.96

Phase margin (PM) 61.4° 46.9°

Allowed time delay error, �θ/θ 2.14 1.59

Sensitivity peak, Ms 1.59 1.70

Complementary sensitivity peak, Mt 1.00 1.30

Phase crossover frequency, ω180 · θ 1.57 1.49

Gain crossover frequency, ωc · θ 0.50 0.51

Fig. 5.7 Responses using “tight” SIMC settings (τc = θ ) for five time delay processes. Unit set-
point change at t = 0; Unit load disturbance at t = 20. Simulations are without derivative action
on the setpoint. Parameter values: θ = 1, k = 1, k′ = 1, k′′ = 1

“tight” settings (τc = θ ), the responses are all smooth. This means that it is certainly
possible to get even tighter responses by choosing a smaller value, for example, τc =
0.5θ , but for most process control applications, this is not recommended because of
less robustness, larger input usage, and more sensitivity to noise. It may seem from
Fig. 5.7 that the SIMC PID-controller does not work well for the double integrating
process (curve 4), but this is a difficult process to control and the response to a unit
input disturbance will be large for any robust controller.
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5.4.2 Smooth Control

Even though the recommended “tight” settings (τc = θ ) give responses that are rea-
sonably smooth, they may still be unnecessary aggressive compared to the required
performance objectives, especially if the effective delay θ is small. For example, for
the limiting case with θ = 0 (no delay), we get with τc = θ an infinite controller
gain, which is clearly not realistic. Thus, in practice one often uses a “smoother”
tuning, that is, τc > θ .

However, τc should not be too large, because otherwise the output y will go out
of bound when there are disturbances d . The question is: How slow (smooth) can
we tune the controller and still get acceptable control? This issue is addressed in
the paper by Skogestad [12] on “tuning for smooth PID control with acceptable
disturbance rejection,” where the following lower bound on the controller gain is
derived (for both PI- and PID-controls).

Controller gain SIMC-recommendation for “smooth control,” or more pre-
cisely “smoothest possible subject to acceptable disturbance rejection”:

|Kc| > |Kc,min| = |�u0|
|�ymax| , (5.32)

where
�ymax = maximum allowed deviation in the output y

�u0 = required input change to reject the disturbance(s) d .

Substituting Kc,min into (5.24) or (5.27), one can obtain the corresponding value
τc,max, and we end up with a region of recommended values for the tuning parame-
ter τc:

τc,min (“tight”) < τc < τc,max (“smooth”) (5.33)

where

τc,min = θ, τc,max = 1

Kc,min
· τ1

k
− θ. (5.34)

The final choice of τc is an engineering decision. A small value for τc (“tight con-
trol” of y) is typically desired for control of active constraints, because tight control
reduces the required backoff (safety margin to the constraint). On the other hand,
tight control will require larger input changes which may disturb the rest of the pro-
cess. For example, for liquid level, there is usually no reason to control the level
tightly, so a large value of τc (“smooth control”) is desired.

Details on the derivation of (5.32) and τc,max are given in [12], but let us here
give a simplified version. Consider disturbance rejection and assume that we use a
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P-only controller with gain Kc . The input change (in deviation from the nominal
value) is then �u = −Kc�y or

|�u| = |Kc| · |�y|.
Assume that the required input change to reject a disturbance is �u0. For example, if
we have a disturbance �dI at the input, then �u0 = −�dI . The smallest controller
gain that can generate the required input change �u0 is obtained when we have the
largest output change (|�y| = |�ymax|), and we get

|�u0| = |Kc,min| · |�ymax|
and (5.32) follows.

5.4.3 Input Usage

The magnitude of the dynamic input change can be an important issue when tuning
the controller, that is, when selecting the value for τc. The transfer function from the
disturbance d to the input u is given by (see Fig. 5.1):

u(s) = − gdc

1 + gc
d(s)

With integral action in the controller (e.g., PI or PID control), the steady-state in-
put change to a step disturbance d is independent of the controller and is given by
u(t = ∞) = − kd

k
d where kd is the steady-state disturbance gain and k is the steady-

state process gain. We assume that we can reject the expected disturbances at steady
state, that is, we assume |u(t = ∞)| = | kd

k
d| ≤ |umax| where |d| is the magnitude of

the disturbance change, and |umax| is the maximum allowed input change, because
otherwise the process is not “controllable” (with any controller). However, the dy-
namic input change u(t) will depend on the controller tuning, and we will consider
the initial change (at t = 0+) just after a step disturbance d .

We consider two important disturbances, namely an input “load” disturbance du

(corresponding to gd = g) and an output disturbance dy (corresponding to gd = 1).
Note that an output disturbance has an immediate effect on the output y. A physical
example is a process where we add another stream (output disturbance) just before
the measurement y. Mathematically, an output disturbance is equivalent to a setpoint
change (with ys = −dy )

For an input (“load”) disturbances du, input usage is not an important issue for
SIMC-tuning, even dynamically. This is because the SIMC controller gives a closed-
loop transfer function y

ys
= gc

1+gc
with little or no overshoot, see (5.16) and (5.18),

and since u
du

= − gc
1+gc

, we get for du a corresponding input response with little

overshoot. This is illustrated by the input changes for a load disturbance (t = 20) in
Fig. 5.7.
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On the other hand, for an output disturbances dy (gd = 1) or equivalently for a
setpoint change ys = −dy , input usage may be an important issue for tuning. The
steady-state input change to a step setpoint change ys is u(t = ∞) = 1

k
ys . However,

with PI-control the input will initially jump to the value u(t = 0+) = Kcys , as illus-
trated for the setpoint change in Fig. 5.7 (e.g., see the first-order process, case 5).
This initial change is larger than the steady-state change if Kck > 1, which is usually
the case, except for delay-dominant processes. With SIMC-tunings we must require

∣∣u(
t = 0+)∣∣ = |Kcys | =

∣∣∣∣ τ1

τc + θ

1

k
ys

∣∣∣∣ ≤ |umax|. (5.35)

Note that u and ys are deviation variables. Consider, for example, a first-order pro-
cess with τ1 = 8 and θ = 1. With the choice τc = θ , the initial input change is
τ1/(τc + θ) = 4 times the steady-state input change ys/k. If such a large dynamic
input change is not feasible, then one would need to use “smoother” control with a
larger value for τc in order to satisfy (5.35).2

With PID control, the derivative action will cause even larger input changes for
output disturbances, and this may be one reason for reducing or even avoiding
derivative action. It is also the reason why to avoid “derivative kick,” we recom-
mend that the setpoint is not differentiated, see (5.2).

5.5 Optimality of SIMC PI Rules

How good are the SIMC PI rules, that is, how much room is there for improve-
ments? To study this, we compare the SIMC PI performance, with τc as a parame-
ter, to the “Pareto-optimal” PI-controller. Pareto-optimality applies to multiobjective
problems and means that no further improvement can be made in objective 1 (output
performance in our case) without sacrificing objective 2 (robustness and input usage
in our case).

We choose to quantify robustness and input usage in terms of the sensitivity peak
Ms . We also considered other “robustness” measures, for example, the relative delay
margin as suggested by Foley et al. [4], but we choose to use Ms . One reason is that
we found that the Ms -value correlates well with the input usage as given by its total
variation (TV), which agrees with the findings of Foley et al. [4]. Such a correlation
is reasonable since a large Ms -value corresponds to an oscillatory system with large
input variations.

We choose to quantify performance in terms of the integrated absolute error in
response to a setpoint change (IAEys ) and to an input “load” disturbance (IAEd ).

2It may seem from (5.35) that “slow” processes, which have a large time constant τ1, will always
require “slow” control (large τc) in order to avoid excessive input changes. However, this is usually
not the case because such processes often have a corresponding large gain k such that the value
k′ = k/τ1 may be sufficiently large to satisfy (5.35) even with τc = θ .
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Table 5.3 Optimal PI-controllers (Ms = 1.59) and corresponding IAE-values for four processes

Process Setpoint Input disturbance Optimal combined (minimize J )

Kc τI IAEo
ys Kc τI IAEo

d Kc τI IAEys IAEd J Ms

e−s 0.20 0.32 1.607 0.20 0.32 1.607 0.20 0.32 1.607 1.607 1 1.59
e−s

s+1 0.55 1.15 2.083 0.50 1.04 2.036 0.54 1.10 2.084 2.037 1.00 1.59
e−s

8s+1 4.0 8 2.169 3.33 3.65 1.135 3.47 4.0 3.096 1.164 1.23 1.59
e−s

s
0.50 ∞ 2.169 0.40 5.8 15.09 0.41 6.3 4.314 15.4 1.51 1.59

IAEys is for a unit setpoint change. IAEd is for a unit input disturbance

Table 5.4 SIMC PI-controllers (τc = θ ) and corresponding J - and Ms -values for four processes

Process SIMC PI (τc = θ) Improved SIMC PI (τc = θ)

Kc τI IAEys IAEd J Ms Kc τI IAEys IAEd J Ms

e−s 0 0(∗) 2.17 2.17 1.35 1.59 0.17 0.33 1.95 1.95 1.21 1.45
e−s

s+1 0.5 1 2.17 2.04 1.03 1.59 0.67 1.33 1.99 1.99 1.09 1.69
e−s

8s+1 4 8 2.17 2.00 1.38 1.59 4.17 8 2.14 1.92 1.34 1.62
e−s

s
0.5 8 3.92 16 1.43 1.70 0.5 8 3.92 16 1.43 1.70

(∗) Pure integral controller with KI = Kc/τI = 0.5

The setpoint performance is often referred to as the “servo” behavior, and the dis-
turbance (in this case the input “load” disturbance) performance is often referred to
as “regulator” behavior. It may be argued that a two-degree-of-freedom controller
(“feedforward action”) may be used to improve the response for setpoints, but note
that a setpoint change is equivalent to an output disturbance (with gd = 1 in Fig. 5.1)
which can only be counteracted by feedback. Thus, both setpoint changes (output
disturbances) and input disturbances should be included when evaluating perfor-
mance, and to get a good balance between the two, we weigh them about equally by
defining the following performance cost:

J (c) = 0.5

[
IAEys(c)

IAEo
ys

+ IAEd(c)

IAEo
d

]
(5.36)

where the reference values, IAEo
ys and IAEo

d , are for IAE-optimal PI-controllers
(with Ms = 1.59) for a setpoint change and input disturbance, respectively. We
could have used the truly optimal IAE-value as the reference when computing J

(without the restriction Ms = 1.59), but this would not have changed the results
much because the IAE-value is anyway quite close to its minimum at Ms = 1.59.
Table 5.3 gives the tunings and reference values obtained using IAE-optimal PI-
controllers (with Ms = 1.59) for four different processes, and Table 5.4 gives the
tunings, costs J , and Ms -values for the SIMC PI-controller (with τc = θ ). Impor-
tantly, the weighted cost J is independent of the process gain k and the disturbance
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Fig. 5.8 Check of optimality
of SIMC PI tuning rules for
four processes

magnitude, and also of the unit used for time. Note that two different optimal PI-
controllers are used to obtain the two reference values, whereas a single controller c

is used to find IAEys(c) and IAEd(c) when evaluating the weighted IAE-cost J (c).
Figure 5.8 shows the trade-off between performance (J ) and robustness (Ms ) for

the SIMC PI-controller (blue solid curve) and the Pareto-optimal controller (dashed
black curve) for four different processes: pure time delay (τ1/θ = 0), small time
constant (τ1/θ = 1), intermediate time constant (τ1/θ = 8), and integrating process
(τ1/θ = ∞). The curve for the SIMC controller was generated by varying the tuning
parameter τc from a large to a small value. The controllers corresponding to the
choices τc = 1.5θ (smoother), τc = θ (recommended), and τc = 0.5θ (aggressive)
are shown by circles. The Pareto-optimal curve was generated by finding for each
value of Ms , the optimal PI-controller c with the smallest IAE-value J (c). Except
for the pure time delay process, the differences between the J -values for SIMC
(blue solid curve) and optimal (dashed black curve) are small (within about 10%),
which shows that the SIMC PI-rules are close to optimal.
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Fig. 5.8 (Continued)

Note that we have a real trade-off between performance (J ) and robustness (Ms )
only when there is a negative slope between these variables (in the left region in the
figures in Fig. 5.8). We never want to be in the region with a zero or positive slope
(to the right in the figures), because here we can improve both performance (J ) and
robustness (Ms ) at the same time with another choice for the tuning parameter (using
a larger value for τc). Another important observation from Fig. 5.8 is then that the
SIMC-recommendation τc = θ for “tight” control (as given by middle of the three
circles) in all cases is located in the desired trade-off region with a negative slope,
well before we reach the minimum. Also, the recommended choice gives a fairly
constant Ms -value in the region 1.59 to 1.7. From this we conclude that, except for
the time delay process, there is little room to improve on the SIMC PI rules, at least
when performance and robustness are as defined above (J and Ms ).

The IAE-cost J in (5.36) is based on equal weighting of servo (output distur-
bance) and regulator (input disturbance) performance. The existence of a trade-off
between servo and regulator performance can be quantified by considering how
much larger the (Pareto) optimal cost Jopt (dashed black line) is than 1 at the refer-
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ence robustness, Ms = 1.59, see also Table 5.3. For a pure time delay-process, we
have that Jopt = 1 for Ms = 1.59, and there is no trade-off. The reason is that the
setpoint and output disturbance responses are the same. On the other hand, for the
other extreme of an integrating process, we have a clear trade-off since the optimal
PI-controller has Jopt = 1.51 (the SIMC PI-controller with Ms = 1.59 is close to
this with J about 1.6). The existence of the servo/regulator trade-off for an integrat-
ing process implies that for a given robustness (Ms -value), one can find PI-settings
with significantly better regulator (load disturbance) performance or better servo
(setpoint) performance, but not both at the same time. To be able to shift the trade-
off, one may introduce an extra parameter in the PID rules [1], in addition to τc . For
the SIMC method, this extra servo/regulator trade-off parameter could be c in the
following expression for the integral time:

τI = min
(
τ1, c(τc + θ)

)
(5.37)

where c = 4 gives the original SIMC-rule. A larger value of c improves the setpoint
performance, and a smaller value, e.g., c = 2, improves the input disturbance per-
formance [6]. However, introducing an extra parameter adds complexity, and the
potential benefit does not seem sufficiently large. Nevertheless, one may consider
choosing another (lower) fixed value for c. There are two reasons why we recom-
mend keeping the SIMC-value of c = 4. First, it is close to the Pareto-optimal PI
controller (as seen from Fig. 5.8), so we cannot get a significant improvement with
our performance objective J . Second, with a smaller value for c, say c = 2.5, the
recommended choice τc = θ becomes less robust (with a higher Ms ), so one would
need to recommend a different value for τc for an integrating process, say τc = 1.5θ ,
which would add complexity. In summary, we find that the value c = 4 in the origi-
nal SIMC rule provides a well-balanced servo/regulator trade-off.

5.6 Improved SIMC Tuning Rules

For a pure time delay process, we see from Fig. 5.8 that the IAE-value (J ) for
the SIMC controller is about 40% higher than the minimum with the same robust-
ness (Ms ). This is further illustrated by the closed-loop simulations in Fig. 5.9,
where we see that the SIMC PI-controller (denoted SIMC-original in the fig-
ure) gives a nice and smooth response. However, the response is somewhat slug-
gish initially, because it is actually a pure I-controller (with Kc = 0, τI = 0, and
KI = Kc/τI = 0.5). On the other hand, the IAE-optimal PI-controller (with min-
imum J for Ms = 1.59) has Kc about 0.2 and τI about 0.32 (and KI = 0.62). In
fact, the optimal PI-controller for a pure time delay process (dashed black line in
Fig. 5.8) has an almost fixed integral time of approximately θ/3 for all values of Ms

between 1.4 and 1.7.
Based on this fact, we propose a simple change to the SIMC-rules, namely to

replace τ1 by τ1 + θ/3 in the rules (PI control), which markedly improved the re-
sponses for a pure time delay process. It is important that the change is simple
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Fig. 5.9 Closed-loop setpoint responses for pure time delay process (θ = 1, k = 1, τ1 = 0) with
PI-control. All three controllers have the same robustness (Ms = 1.59). For a pure time delay
process, the setpoint and disturbance responses are identical, and the input and output are identical.
IMC PI: Kc = 0.29 and τI = 0.5 (KI = Kc/τI = 0.58). SIMC PI original (τc = θ ): Kc = 0 and
τI = 0 (KI = 0.5). SIMC PI improved (τc = 0.61θ ): Kc = 0.207 and τI = 0.333 (KI = 0.62)

because “simplicity” was one of the main objectives when originally deriving the
SIMC rules.

A similar change, but with θ/2 rather than θ/3, was originally proposed by
Rivera et al. [8] for their “improved PI” tuning rule, and the effectiveness of this
modification is also clear from the paper of Foley et al. [4]. However, as seen in
Fig. 5.9, the response with this IMC PI controller also settles rather slowly toward
the setpoint, indicating that the integral time θ/2 is too large. The proposed value
θ/3 gives a faster settling and is also closer to the original SIMC-rule (which is zero
for a time delay process). The conclusion is that we recommend to replace τ1 by
τ1 + θ/3 in the SIMC rules to get the improved SIMC rules:

Improved SIMC PI-rule for first-order with delay process

Kc = 1

k

τ1 + θ
3

τc + θ
, (5.38)

τI = min

{
τ1 + θ

3
,4(τc + θ)

}
. (5.39)

The improvement of this rule for a pure time delay processes is clear from the red
curves in Figs. 5.9 and 5.8 (upper left); for small Ms -values, the improved SIMC-
controller is almost identical to the Pareto-optimal, which confirms that τI = θ/3
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is close to optimal for a pure time delay process. For the process with a small time
constant (τ1 = θ ), the improved SIMC rule (red curve in lower left plot in Fig. 5.8)
is slightly better than the “original” SIMC rule (blue curve) for higher Ms -values
(where we get better performance) but slightly worse for lower Ms -values. For the
two processes with a large time constant (τ1 = 8θ and τ1 = ∞), there is, as expected,
almost no difference between the original and improved SIMC rules.

5.7 Discussion

5.7.1 Measurement Noise

Measurement noise has not been considered in this chapter, but it is an important
consideration in many cases, especially if the proportional gain Kc is large, or, for
cases with derivative action, if the derivative gain KcτD is large. However, since the
magnitude of the measurement noise varies a lot in applications, it is difficult to give
general rules about when measurement noise may be a problem. In general, robust
designs (with small Ms ) are insensitive to measurement noise. Therefore, the SIMC
rules with the recommended choice τc = θ are less sensitive to measurement noise
than most other published settings method, including the Ziegler–Nichols settings. If
actual implementation shows that the sensitivity to measurement noise is too large,
then the following modifications may be attempted:

1. Filter the measurement signal, for example, by sending it through a first-order
filter 1/(τF s + 1); see also (5.2). With the proposed SIMC-settings, one can
typically increase the filter time constant τF up to almost 0.5θ , without a large
affect on performance and robustness.

2. If derivative action is used, one may try to remove it, and obtain a first-order
model before deriving the SIMC PI-settings.

3. If derivative action has been removed and filtering the measurement signal is
not sufficient, then the controller needs to be detuned by selecting a larger value
for τc.

5.7.2 Retuning for Integrating Processes

Integrating processes

g(s) = k′ e−θs

s

are common in industry, but control performance is often poor because of incorrect
controller settings. When encountering oscillations, the intuition of the operators is
to reduce the controller gain. If the oscillations are relatively slow, then this is the
exactly opposite of what one should do for an integrating process. The product of the
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controller gain Kc and the integral time τI must be larger than 4/k′ to avoid slow
oscillations [11]. One solution is to simply use proportional control (with τI = ∞),
but this is often not desirable. Here we show how to easily retune the controller to
just avoid the oscillations without actually having to derive a model. This approach
has been applied with success to industrial examples.

Consider a PI controller with (initial) settings Kc0 and τI0 which results in “slow”
oscillations with period P0 (larger than 3 ·τI0, approximately). Then we likely have a
close-to integrating process for which the product of the controller gain and integral
time (Kc0τI0) is too low. To avoid oscillations with the new settings Kc and τI , we
must require [11]:

KcτI

Kc0τI0
≥ 1

π2
·
(

P0

τi0

)2

. (5.40)

Here 1/π2 ≈ 0.10, so we have the rule:

• To avoid “slow” oscillations, the product of the controller gain and integral time
should be increased by a factor F ≈ 0.1(P0/τI0)

2.

5.7.3 Controllability

The effective delay θ is easily obtained using the proposed half rule. Since the ef-
fective delay is the main limiting factor in terms of control performance, its value
gives invaluable insight about the inherent controllability of the process.

From the settings in (5.27)–(5.29), a PI-controller results from a first-order
model, and a PID-controller results from a second-order model. With the effective
delay computed using the half rule in (5.12)–(5.13), it then follows that PI-control
performance is limited by (half of) the magnitude of the second-largest time con-
stant τ2, whereas PID-control performance is limited by (half of) the magnitude of
the third-largest time constant, τ3.

5.8 Conclusions and Future Perspectives

This chapter has summarized the SIMC two-step procedure for deriving PID settings
for typical process control applications.

Step 1 The real process is approximated by a first-order with delay model
(for PI control) or a second-order model (for PID control). To obtain the
model, the simplest approach is probably to use an open-loop step experiment
(Fig. 5.3), but if this is difficult for some reasons, then one may alternatively
use a closed-loop setpoint response with P-controller (Fig. 5.4). If the starting



5 The SIMC Method for Smooth PID Controller Tuning 173

point is a detailed model, then the half rule may be used to obtain the effective
delay θ , see (5.12)–(5.13).

Step 2 For a first-order model (with parameters k, τ1, and θ ), the following
SIMC PI-settings are suggested (original SIMC rule):

Kc = 1

k

τ1

τc + θ
; τI = min

{
τ1,4(τc + θ)

}

where the closed-loop response time τc is the tuning parameter. For a dom-
inant second-order process (for which τ2 > θ , approximately), one needs to
add derivative action with

Series-form PID: τD = τ2.

To improve the performance for delay-dominant processes, one may replace τ1

by τ1 + θ
3 and use the “improved” SIMC PI-rules in (5.38)–(5.39). A more careful

analysis needs to be done to check if a similar improvement can be used with a PID
controller.

Note that although the same formulas are used to obtain Kc and τI for both PI-
and PID-control, the actual values will differ since the effective delay θ is smaller for
a second-order model. The tuning parameter τc should be chosen to get the desired
trade-off between fast response (small IAE) on the one side, and smooth input usage
and robustness (small Ms ) on the other side. The recommended choice τc = θ gives
robust (Ms about 1.6 to 1.7) and somewhat conservative settings when compared
with most other tuning rules, and if it is desirable to get faster control, one may
consider reducing τc to about θ/2 (see Fig. 5.8). More commonly, one may want to
have “smoother” control with τc > θ and a smaller controller gain Kc . However, the
controller gain must be larger than the value given in (5.32) to achieve a minimum
level of disturbance rejection.

Comparing the performance of the SIMC-rules with the optimal for a given ro-
bustness (Ms value) shows that the SIMC-rules are close to the Pareto-optimal set-
tings (Fig. 5.8). This means that the room for improving the SIMC PI-rules is lim-
ited, at least for the first-order plus delay processes considered in this chapter, and
with a good trade-off between rejecting input and output (setpoint) disturbances.

However, it should be noticed that the SIMC rules apply to processes that can
be reasonably well approximated by first- or second-order plus delay models. This
applies to most process control applications, including some unstable plants, but
it obviously does not apply in general, for example, for some of the unstable or
oscillating processes found in mechanical systems. For such processes, it would be
interesting to study the validity and extension of the SIMC rules or similar analytic
model-based PID tuning rules. It is also interesting to establish for which processes
the PID controller is a suitable controller and for which processes it is not.
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Appendix: Estimation of Parameters τ1 and θ from Closed-Loop
Step Response

Shamsuzzoha and Skogestad [10] discuss at the end of their paper a two-step closed-
loop procedure, where the first step is to use closed-loop data and some expressions
to obtain the parameters k, τ1, and θ . We use this approach but have modified the
expressions. Our expression for k in (5.7) is given by their equation (35) by noting
that B = |(1 − b)/b| where b = �y∞/�ys . However, our expressions for θ and τ1
in (5.8)–(5.9) differ somewhat from their equations (36) and (37). The reason is that
their equations (36) and (37) are not consistent in terms of the time delay estimate,
because the expression for τ1 in (36) is based on θ = 0.43tp , whereas (37) uses
θ = 0.305tp . To correct for this, we first note from (19) in their paper (noting that
τ1 = τI for the delay-dominant case) that τ1 and θ are related by

τ1 = rθ

where r = 2A/B , which is our expression in (5.9). Here, Shamsuzzoha and Sko-
gestad [10] recommend to use θ = 0.44tp for τ1 < 8θ and θ = 0.305tp for τ1 > 8θ .
However, to get better accuracy and a smooth transition, we fitted simulation data
for θ/tp as a function of τ1/θ for a wide range of processes with an overshoot of
0.3 and obtained the correlation [5]

θ = tp · (0.309 + 0.209e−0.61(τ1/θ)
)

as given in (5.8). Note here that (0.309+0.209e−0.61(τ1/θ)) is 0.518 for r = τ1/θ = 0
and 0.309 for r = ∞.
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