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1. Introduction

The focus of this keyword is on the exciting field
of process dynamics, process control, process
monitoring and process identification. This is a
very broad field which is applied all across the
process systems engineering (PSE) community.
This keyword is structured such that it has focus
on a number of key areas within this field.

InChapter2specialattentionispaidtoprocess
monitoring applications and development in
pharmaceutical production and food production.
There have beenmajor changes in those applica-
tion areas, where the introduction of on-line
measurement systems has received quite some
attention in recentyears. Process instrumentation
isbrieflycoveredingeneral terms, followedbyan
overview of some of the most frequently used
monitoring tools. Short case studies illustrate the
application of those tools.

Chapter 3 is introduced bymeans of standard
definitions and terms. Key publications on
plant-wide control are briefly summarized, fol-
lowed by a comparison and critical discussion of
two systematic procedures for design of plant-
wide control systems. Most of the plant-wide
control ideas can be transferred to batch
production systems.

Chapter 4 focuses on batch production sys-
tems, for example, in the pharmaceutical and the
polymer production industry. Following a basic
definition of a batch production system, com-
monmethods for batch productionmanagement
are introduced. Quality control of batch produc-
tion systems is crucial in order to obtain an
efficient production system, and thereforemeth-
ods and tools for inferring information about
batch production processes are briefly described
as well. Finally, optimal operation of single
batch processes and batch to batch control are
introduced.

Chapter 5, on multiparametric programming
and its application within model predictive con-
trol (MPC), starts with providing an overview of
the most important developments in this area.
The theory behind multiparametric program-
ming is introduced, and its importance for the
practical application of MPC and ‘‘MPC on a
chip’’ technology is highlighted through a few
illustrative examples. This section ends with a
short discussion of future developments in the
area.

The Chapter 6 focuses on on-line applica-
tion, since dynamic simulators are increasingly
used within the operation of chemical and pe-
troleum production processes, to name a few

2 Process Systems Engineering, 5. Process Dynamics, Control, Monitoring, and Identification



examples. Starting from the 1980s, the contri-
bution provides a brief historical perspective of
dynamic process modeling, followed by the
description of the main software requirements
for a typical architecture that allows on-line
simulation. Technical and organizational chal-
lenges in using on-line simulation are highlight-
ed, and applications of the technology are
described.

2. Process Monitoring

2.1. Introduction

Monitoring process performance is a critical
requirement in any manufacturing process as
producing quality products within specification
reproducibly is a prerequisite of an economi-
cally viable process. Without effective moni-
toring and control strategy, as key requisite, a
capable manufacturing process, could not be
successful. Monitoring is essential for various
aspects of the control strategy–the quality of raw
materials is usually tested on intake, process
equipment often has to be rigorously qualified
(e.g., in the highly regulated pharmaceutical or
food industries), environment is controlled by
implementing manufacturing-area classifica-
tion where relevant, waste is treated prior to
release and the quality of the final product is
tested before release. Initiatives, such as quality
by design (QbD) and a supporting enabling
technology of process analytical technology
(PAT) championed by the US Food and Drug
Administration (FDA) in the pharmaceutical
industry, aim to shift the focus for manufactur-
ing from end-product quality testing to building
the quality in the process. Such a shift in em-
phasis would not be possible without reliable
and effective monitoring. Indeed PAT has been
defined as ‘‘a system for designing, analyzing,
and controlling manufacturing through timely
measurements (that is, during processing) of
critical quality and performance attributes of
raw and in-process materials and processes,
with the goal of ensuring final product quali-
ty’’ [1]. Traditional process control strategies
based upon information from laboratory assays
and supervisory computer systems (SCADA)
are routinely used to regulate process operation
and correct for disturbances resulting from raw

material variations through to production plant
variations. If PAT can provide additional infor-
mation on disturbances and deviations, giving
greater plant insight, then the effects of distur-
bances can be reduced and quality control tight-
ened. However, greater benefits are to be gained
by the systematic use of PAT tools in process
development to increase fundamental under-
standing and more robust definition of the de-
sign and control space of the process operation.

An analogy in the food industry in terms of
the importance of effective monitoring proce-
dures can be seen in the hazard analysis critical
control point (HACCP) food safety standard,
which is now widely incorporated into national
food safety legislation of many countries. The
seven basic principles of HACCP implementa-
tion consist of [2]:

1. Conduct hazard analysis, considering all in-
gredients, processing steps, handling proce-
dures, and other activities involved in a
foodstuff’s production

2. Identify critical control points (CCPs)
3. Define critical limits for ensuring the control

of each CCP
4. Establishmonitoringprocedures todetermine

if critical limits have been exceeded and
define procedure(s) for maintaining control

5. Define corrective actions to be taken if con-
trol is lost (i.e., monitoring indicates that
critical limits have been exceeded)

6. Establish effective documentation and
record-keeping procedures for developed
HACCP procedure

7. Establish verification procedures for routine-
ly assessing the effectiveness of the HACCP
procedure, once implemented

Clearly effective monitoring is critical to
ensuring product quality regardless of the type
of manufacturing industry. Essential compo-
nents of effective monitoring include represen-
tative measurement and a robust representation
of the obtained information, allowing appropri-
ate action to be taken.

2.2. Critical Process Parameter
Measurement

A complete review of specific process instru-
mentation for critical parametermeasurement is

Process Systems Engineering, 5. Process Dynamics, Control, Monitoring, and Identification 3



beyond the scope of this section and the empha-
sis will be placed on the characteristics of
measurements to be used in a critical parameter
control scheme. These characteristics raise
important questions that must be answered prior
to sensor specification and they lead to the
establishment of specific protocols that need to
be followed during sensor use. Such character-
istics would be equally applicable to established
as well as emerging PAT measurement
methodologies. The key considerations for a
sensor are:

Accuracy and Resolution. A useful sensor
provides measurement at an appropriate accu-
racy for the control task. If, for example, a
temperature is to be controlled in the range of
�0.1 �C then the measurement must be signifi-
cantly more accurate than that. If that was not
the case, the actual process may be subject to
larger deviations, although it may appear that
the process is controlled within this range.

Precision is the probability of obtaining the
same value with repeated measurements on the
same system and it is particularly important in
the longer term operations. For instance, sensor
drift from calibration can cause deterioration in
system performance because the desired values
are not achieved. Drift is often inevitable, so it
is important to know the rates of likely drift so
that recalibration can be performed as
necessary.

Sensitivity is defined as the ratio between
the sensor output change DS and the given
change in the measured variable Dm (sensitivity
S ¼ DS/Dm). If the critical control parameter
value changes, it is important that the sensor
responds to such a change.

Reliability. Sensors provide information
which is acted upon either by process operators
in a ‘‘human in the loop’’ control scheme or
directly by closed-loop control schemes. When
operators use the information, there is some
opportunity for human interpretation of the
results. Failed sensors are more difficult to
detect in a hardware-based closed-loop scheme.
If the information is essential and a sensor fails,
then implications on operation can be severe.
Reliability is a function of the failure rate, of the

failure type, ease ofmaintenance and repair, and
physical robustness. Redundancy and planned
maintenance programs to maintain the sensors
are required to maintain reliability.

Response time is defined as the time re-
quired for a sensor output to change from its
previous state to a final settled value within a
tolerance band of the correct new value. The
dynamic sensor characteristics are important as
the sensor must respond significantly faster than
the process. If a sensor has a long response time
it may indicate an ‘‘average’’ value rather than
the actual process value.

Practicality. The environment within a pro-
cess may be particularly demanding—for
instance, the sensors may be exposed to high
temperatures or pressures. Whilst a sensor may
in theory measure the variable of interest in
ideal conditions, the range of the operational
environment could render it incapable of func-
tioning or may influence reliability.

Cost. Sophisticated instrumentation is now
available for process monitoring with PAT, but
the price can be high. However, the benefits
gained can be significant if sensor information
leads to raw material/resource savings or in-
creases productivity. A cost benefit analysis
should be performed to assess whether the
instrumentation is appropriate.

A significant issue to be addressed in effec-
tive monitoring is the placement of a sensor
(Fig. 1) as it influences the frequency of avail-
able measurements. Theory dictates that for a

Figure 1. Sensor classification based on placement and
speed of response

4 Process Systems Engineering, 5. Process Dynamics, Control, Monitoring, and Identification



measurement to be of value it must be sampled
above a certain minimum frequency. Often in-
struments are used on-line (say temperature or
pH) or they can be multiplexed to save cost, but
the frequency of information supply is limited
because the instruments must serve several
vessels (e.g., mass spectrometer measure-
ments). However, it is off-line sample analysis
where problems with low frequency measure-
ment are most likely to arise.

Initiatives such as PAT lead to increased use
of sophisticated sensor technology, such as near
infrared spectroscopy (NIR), which requires
more powerful data interpretation and monitor-
ing tools.

2.3. Monitoring Tools

During the 1920s, the control charting method-
ology as the fundamental tool to understand and
address variability, the foundation of so-called
statistical process control, was developed [3].
Visualizing the variability is central to its re-
duction and statistical tools, such as cause and
effect diagram, flow chart, Pareto chart, histo-
gram, run chart, scatter diagram, and control
charts, are often used. Histograms, flow charts,
run charts, and scatter diagram compile the data
to show the overall picture while Pareto dia-
grams are used to show problem areas. Howev-
er, these methods do not indicate limits within
which the process is to operate. The univariate
SPC methodology uses charts with upper con-
trol limits known as ‘‘UCL’’, lower control
limits known as ‘‘LCL’’ and means denoted as
�X or �R for individual process variables. The
basic principles of control charts, control limit
settings, moving average charts, exponentially
weighted moving average (EWMA) and cumu-
lative sum (or CUSUM) control charts are de-
scribed in [4] and illustrated by means of a case
study of a mean particle size monitoring in a
crystallization unit operation in the pharmaceu-
tical industry [4].

Whilst univariate SPC can be very effective
and has been used widely, it fails to account for
the interactions between process variables and
thus to recognize off-specification behavior.
Also, univariate charts may indicate off-
specification behavior in terms of one process
variable, but to identify the cause of the fault

conditions the interpretation of multiple charts
is required. Finally, nonsteady-state behavior,
process dynamics, time delays, etc. cause uni-
variate charts to be inappropriate. Since most
industries collect large amounts of data, multi-
variate statistical process control procedures are
now considered to be an appealing approach to
process monitoring and variability reduction.

2.3.1. Data Compression Methods for
Multivariate Statistical Process Control
(MSPC)

Multivariate SPC methods [5, 6] are based on
fundamental concepts of principal component
analysis (PCA) and partial least squares (PLS),
also known as projection to latent structures.
PCA [7] generates a new group of uncorrelated
variables (principal components, PCs). The ap-
proach transforms matrix containing measure-
ments from n process variables, [X], into a
matrix of mutually uncorrelated PCs, tk (where
k ¼ 1 to n) which are transforms of the original
data into a new basis defined by a set of orthog-
onal loading vectors, pk. The individual values
of the principal components are called scores.
The transformation is defined by Equation (1):

½X� ¼
Xnp< n

k¼1

tkp
T
kþE ð1Þ

The loadings are the eigenvectors of the data
covariance matrix, XTX. The tk and pk pairs are
ordered so that the first pair captures the largest
amount of variation in the data and the last pair
captures the least. This means that fewer PCs
are required to describe the relationship than
original process variables. The compression of
data allows a visualization of the compressed
data for the purpose of feature extraction and
thus enables the analysis of interacting process
variables that are the cause of process
deviations.

PLS [8] is a tool suitable whenever plant
variables can be partitioned into cause (X) and
effect (Y) values. The algorithm operates by
projecting the cause and effect data onto a
number of latent variables and then modelling
the relationships between these new variables
(the so-called inner models) by single-input–
single-output linear regression as described by
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Equations (2) and (3):

X ¼
Xnp< nx

k¼1

tkp
T
kþE and Y ¼

Xnp< nx

k¼1

ukq
T
kþF� ð2Þ

where E and F* are residual matrices, np is the
number of inner components that are used in the
model and nx is the number of causal variables.

uk ¼ bktkþek ð3Þ

where bk is a regression coefficient, and ek refers
to the prediction error.

2.3.2. Multiway MSPC

Batch processes typically exhibit nonlinear
characteristics that may limit the effectiveness
of conventional linear PCA and PLS

procedures. Whilst nonlinear MSPC techniques
have been developed and applied successful-
ly [9], the transformation of batch data has
proved to be a more effective option. The most
common form of data transformation, termed
multiway PCA and PLS, was initially proposed
by [5]. Since then, for example, the technique
was applied by [10] to monitor faults in auto-
motive engine performance. The detection of
faults by measuring particular chemicals from
mixtures using electronic nose based on gas
chromatography-mass spectrometry (GC-MS)
was investigated by [11].

The concept of multiway PCA and PLS is a
relatively straightforward extension where de-
viations frommean trajectories rather than stea-
dy-state are considered [5]. Figures 2 and 3
illustrate the principle for a typical set of

Figure 2. Typical data structure in a batch manufacturing process
a) Raw materials; b) Online data; c) Quality data; d) DSP data

Figure 3. One possible multiway decomposition of on-line data
Batch 1: time ¼ 1. . .n1; Batch 2: time ¼ 1. . .n2; Batch 3: time ¼ 1. . .n3
n1<n3<n2
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operational process data where data of various
size and frequency may be collected at various
stages of processing.

Quality data on raw materials used in several
batches, fromwhich data ismonitored over time
from several sensors will need to be linked with
quality data monitored during the batch at vari-
ous frequencies for various quality attributes
and merged with on-line data available from
downstream processing unit operations.

Given that the duration of each batch is likely
to differ, as indicated in Figure 3, the data from
each batch is often considered only until the
shortest run length. For each variable the mean
trajectory over all the batches used in model
building is calculated and removed from each
process measurement. This effectively removes
the major nonlinearity from the data and leaves
a zero mean trajectory for each variable. The
individual data matrices from each batch are
unfolded into a single unfolded data matrix as
depicted in Figure 3 and PCA can be applied to
this unfolded data matrix.

2.4. Seed Quality Monitoring Case
Study

A typical example of the data structure depicted
in Figure 2 is taken from the bioprocessing
industry. In order to monitor the quality of seed
cultivations used for starting the manufacturing
process in a range of valuable biological pro-
ducts, such as antibiotics, a number of process
variables are measured. These include respira-
tory data, as well as information about the
operating conditions, such as agitation, pH,
temperature, etc. In this case study, 20 lots of
data from the seed stage of pilot-scale antibiotic
cultivations were available and only the airflow
and respiratory data were used in analyses as
other variables were tightly controlled. The data
matrix forMPCA analysis was then constructed
as indicated in Figure 3. Figure 4 depicts the plot
of the resulting PC1 against PC2 and illustrates
the degree of separation within this cluster. In
Figure 4 (o) represent batches that ultimately
resulted in low final stage productivity while
(þ) represent the high productivity batches.
Tentative clusters of high- and low-productivity
batches can be seen even at cursory inspection,
for example, along the vertical line representing

the PC2 axis. Although, based on such a simple
separation, three of the low final-productivity
seed batches would cluster within the ‘‘high’’
cluster, this may be an entirely plausible sce-
nario. The seed could have had the same char-
acteristics as those seeds ultimately resulting in
high productivity, i.e., a ‘‘good’’ seed, but pro-
blems could have arisen during the final fer-
mentations, which potentially could have led to
reduced productivity.

These results demonstrate that it is possible
to extract features from seed data that relate to
the final productivity and thus to indicate the
quality of a particular seed before inoculating
the production vessel at the pilot plant scale.

2.5. Alternative Methods

Unfolding the data and reducing the length of
each batch to that of the shortest one may
significantly reduce the monitoring effective-
ness of MPCA and a number of alternative
methods have been developed over the years
to address this issue. For example, see [12] for
an application to on-line steady-state identifica-
tion in polymer injection molding start-up pro-
cess. There are also a number of alternative
methods of data interpretation, such as parallel
factor analysis (PARAFAC). The performance
of several algorithms for fitting the PARAFAC
model was compared by [13]. These include
alternating least squares (ALS), direct trilinear

Figure 4. Plot of PC1 vs PC2 of a MPCA model for seed
quality monitoring
a) High productivity; b) Low productivity
98% variance captured 5PCs
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decomposition (DTLD), alternating trilinear
decomposition (ATLD), self-weighted alternat-
ing trilinear decomposition (SWATLD), pseu-
do-alternating least squares (PALS), alternating
coupled vectors resolution (ACOVER), alter-
nating slice-wise diagonalization (ASD) and
alternating coupled matrices resolution
(ACOMAR).

A further category of methods include non-
linear data representation techniques ranging
from the nonlinear forms of the multivariate
data analysis methods above to the various
forms of artificial neural networks (ANN) that
have been proven effective in monitoring a
variety of processes ranging from fermenta-
tions [14], object tracking [15], wastewater
treatment [16] to monitoring the thermal per-
formance of heat exchangers [17].

One particular type of ANN, referred to as
radial basis function (RBF) network, has been
proven to provide an efficient monitoring tool.
RBF neural networks consist of three layers of
nodes interconnected in a feed-forward manner,
as shown in Figure 5 for two outputs and a
limited interconnection illustrated to retain a
reasonable level of picture clarity.

The first layer distributes the input data into
the hidden layer of the network. The hidden
nodes perform a nonlinear transformation of the
input data [18]. Usually, the Gaussian function
is used, as described by the Equation (4):

ah ¼ exp
�kx�chk2

b2
h

" #
ð4Þ

where ah is the activation of the hth processing
unit in the hidden layer in response to the

input vector ‘x ¼ fx1; . . . ; xng’; ch and bh rep-
resent the position of the center and the cluster
widths in the input space of the unit h,
respectively.

The hidden layer outputs are weighted and
summed in the output nodes. The response of the
jth output node, yj, is given by Equation (5).

yj ¼
XHþ1

h¼1

Wj;hahþu ð5Þ

where Wj;h is the weight between the hidden
node h and the output node j. The bias node is
represented by u and has the value of 1 [19].

The major advantage of neural networks is
that they are able to ‘‘learn’’ from the informa-
tion that is presented. This means, however, that
a suitable training data set is crucial for a good
performance. The importance of the size and
quality of the training data set in ANNmodeling
has been reported extensively in literature [20].
Other important issues in the development of
RBF models are the selection of the network
inputs and the most suitable architecture, i.e.,
the number of RBF units and the number of
nearest neighbors to be used. Whilst the selec-
tion of inputs is usually accomplished by using
process knowledge [21], prediction errors and
cross validation are most frequently used to
select the network topology [19].

Once the topology is defined, the network
can be trained, i.e., the unit centers, unit widths,
and weights are calculated, for example, by
using MOODY and DARKEN’s three step
approach [22]:

1. The unit centers, c, are determined by the k-
means clustering algorithm, which divides
the training data into subsets. Each subset is
related to a cluster center, according to the
similarities of the data. These similarities are
determined by the distance between two data
points. The algorithm minimizes an objec-
tive function E, which is usually the total
squared Euclidean distance between the K
training points in each cluster and the H
cluster centers, according to Equation (6):

E ¼
XH
h¼1

XK
k¼1

Mhkkch�xkk2 ð6Þ

In Equation (6), Mhk is a H � K matrix
called the membership function or cluster

Figure 5. Radial basis function (RBF) neural network
architecture
a) Input layer; b) Hidden layer; c) Output layer
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partition. Each column contains a single 1
that identifies the processing unit to which a
given training point belongs, and zeros are
assigned elsewhere [21].

Once this is achieved, each cluster is
associated with one RBF unit and the cluster
centers become the unit centers c. Each
center is then comparedwith the input vector
and the corresponding unit is activated ac-
cording to the distance between the network
input vector and the center.

2. After determining the unit centers, a P-near-
est neighbors heuristic (Eq. 7) can be used to
find the unit widthssh. The unit width should
be determined so that it is greater than the
distance to the nearest unit center. This
allows the hidden unit to activate at least
another hidden unit. Consequently, any point
within the bounds of that unit will be able to
significantly activate more than one unit,
improving the fit of the desired outputs.

sh ¼ 1

p

Xp
m¼1

kc�zmk2
 !1/2

ð7Þ

where ‘zm’ represents the P-nearest neigh-
bors of c.

3. The weights of the output layer are then
calculated using a least squares-based meth-
od. The objective is to find the weights that
minimize the squared norm of the residuals.
The output layer nodes simply sum the out-
puts from the hidden layer.

After determining the parameters of the net-
work, the local reliability can be measured by
calculating the confidence limits for the model
estimation at a given test point. This is the result
of the weighted average of the local confidence
intervals calculated for each RBF unit [18, 19].

2.6. RBF-Based Monitoring Case
Study

RBF neural network modeling has been used to
monitor a range of different processes. In this
example, it is used to detect deviations in large-
scale production of penicillin. A number of
factors influence the behavior of a large-scale
fermentation and a dynamic and nonlinear
character of the bioprocess mean that simple

monitoring of individual process variables does
not allow the detection of a developing process
deviation, unless there is a severe, obvious fault.
However, detecting deviations early in the pro-
cess is essential in order to ensure that the
process is returned to normal behavior and to
prevent economic consequences due to lower
productivity or even a complete loss of the
whole batch.

Data from a range of nominal and faulty
large-scale penicillin production batches was
available. These includedmeasurements of feed
rates, total feeds added, carbon dioxide evolu-
tion rate (CER) and oxygen uptake rate
(OUR)—respiratory data reflecting the progress
of the fermentation. The hypothesis in this case
was that if the batch behaves nominally, i.e., no
deviations occur, then a model developed using
nominal batches only to predict the respiration
data should be accurate and estimate CER and
OURwith very lowmargin of error. When RBF
models of the process were developed to predict
CER and OUR, respectively, this was indeed
observed (Fig. 6).

In this RBF model, the feed rates, total feed,
and batch age were used as input variables, and
17 RBF units to predict CER with very low
error, remaining within the 95% and 99% con-
fidence limits. However, when this model was
challenged with the feed data from batches
encountering various faults, the errors in CER
prediction violated both 95% and 99% confi-
dence limits at some point during the batch as

Figure 6. Error plot of RBF prediction of CER for a
nominal penicillin production batch
a) 99% confidence limits; b) 95% confidence limits; c) CER
error
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shown in Figure 7 for five faulty batches sepa-
rated by vertical lines.

The violations of the confidence limits could
theoretically be caused by the RBF model ex-
trapolating outside the range of the input data
used for training (a frequent shortfall of ANN
methodology) or by a biological variability
causing real deviations of the process from the
nominal behavior. The benefit of using RBF
models is that check on maximum activity and
probability density [19] provides a measure of
extrapolation. In this case it clearly confirmed
that the reason for the violation of the confi-
dence limits is biological process variability.

However, establishing the reason for such
deviations is not a straightforward matter. One
of the limitations of ANN methodology is the
fact that the interpretation of causal relation-
ships is more difficult than with some of the
more established linear methods, such as PCA
and PLS. In some areas of bioprocessing, e.g.,
the manufacture of biologics for human con-
sumption, the simple indication of process de-
viation, regardless of the underlying reason, is
all that is required, as the strict regulatory
requirements mean that the batch will have to
be terminated and cannot be remedied. In such
circumstances in particular the ANN-based
monitoring can prove very effective.

There are a large number of other types of
ANNmodels developed specifically for estima-
tion of process variables or fault detection and
clustering/classification. The various forms of

neural networks used in diverse applications
preclude detailed description of this methodol-
ogy here, but extensive literature is available
both on the principles and their various
applications.

3. Plantwide Control

3.1. Introduction

A chemical plant may have thousands of mea-
surements and control loops. By the term plant-
wide control it is not meant the tuning and
behavior of each of these loops, but rather the
control philosophy of the overall plant with
emphasis on the structural decisions:

. Selection of controlled variables (CVs,
‘‘outputs’’)

. Selection of manipulated variables (MVs,
‘‘inputs’’)

. Selection of (extra) measurements

. Selection of control configuration (structure
of overall controller that interconnects the
controlled, manipulated, and measured
variables)

. Selection of controller type (proportional–
integral–derivative (PID), decoupler, model
predictive control (MPC), linear–quadratic–
Gaussian (LQG), ratio, etc.)

In practice, the control system is usually
divided into several layers, separated by time
scale (see Fig. 8).

Plantwide control thus involves all the deci-
sions necessary to make a block diagram (used
by control engineers) or a process and instru-
mentation diagram (used by process engineers)
for the entire plant, but it does not involve the
actual design of each controller.

In any mathematical sense, the plantwide
control problem is a formidable and almost
hopeless combinatorial problem involving a
large number of discrete decision variables, and
this is probably why the progress in the area has
been relatively slow. In addition, the problem
has been poorly defined in terms of its objective.
Usually, in control, the objective is that the
controlled variables (CVs, outputs) should re-
main close to their setpoints. However, what
should be controlled? Which CVs? The answer

Figure 7. Error plot of RBF prediction of CER for five
faulty penicillin production batches separated by vertical
lines
a) 99% confidence limits; b) 95% confidence limits; c) CER
error
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lies in considering the overall plant objective,
which normally is to minimize the economic
cost (¼ maximize profit) while satisfying oper-
ational constraints imposed by the equipment,
market demands, product quality, safety, envi-
ronment, and so on. The truly optimal ‘‘plant-
wide controller’’ would be a single centralized
controllerwhich at each time step collects all the
information and computes the optimal changes
in the manipulated variables (MVs). Although
such a single centralized solution is foreseeable
on some simple processes, it seems to be safe to
assume that it will never be applied to any
normal-sized chemical plant. There are many
reasons for this, but one important is that inmost
cases one can obtain acceptable control perfor-
mance with simple structures where each con-
troller block only involves a few variables, and
such control systems can be designed and tuned
with much less effort, especially when it comes
to themodeling and tuning effort. After all, most
real plants operate well with simple control

structures. So how are systems controlled in
practice? The main simplification is to decom-
pose the overall control problem into many
simpler control problems. This decomposition
involves two main principles:

1. Decentralized (local) control. This ‘‘hori-
zontal decomposition’’ of the control layer
is mainly based on separation in space, for
example, by using local control of individual
process units

2. Hierarchical control. This ‘‘vertical decom-
position’’ is mainly based on time scale
separation, and in a process one typically
has the following layers (see Fig. 8)
. Scheduling (weeks)
. Site-wide optimization (day)
. Local optimization (hour)
. Supervisory (predictive, advanced) con-
trol (minutes)

. Regulatory control (seconds)

The upper three layers in Figure 8 deal
explicitly with economic optimization and
are not considered in this chapter. The focus
is on the two lower control layers where the
main objective is to track the setpoints speci-
fied by the layer above. A very important
structural decision, probably more important
than the controller design itself, is the choice of
controlled variables (CVs) that interconnect
the layers. More precisely, the decisions made
by each layer (boxes in Fig. 8) are sent as
setpoints for the controlled variables (CVs) to
the layer below. Thus, indirectly optimization
is considered because CVs should be selected
that are favorable from an economic point of
view.

Typically, PID controllers are used in the
regulatory control layer, where ‘‘stabilization’’
of the plant is the main issue. In the supervisory
control layer, one has traditionally used manual
control or single-loop PID control, complemen-
ted by ‘‘advanced’’ elements such as static
decouplers, feedforward elements, selectors,
split-range controllers, and various logic ele-
ments. However, over the last 25 years, model
predictive control (MPC) has gradually taken
over as a unifying tool to replace most of these
elements. In the (local) optimization layer, the
decisions are usually executed manually, al-
though real-time optimization (RTO) is used

Figure 8. Typical control hierarchy in a chemical plant
a) Real-time optimization (RTO); b) Model predictive con-
trol (MPC); c) Proportional–integral–derivative (PID)
control

Process Systems Engineering, 5. Process Dynamics, Control, Monitoring, and Identification 11



for a few applications, especially in the refining
industry.

The following decisions must be made when
designing a plantwide control strategy:

1. Decision 1: Select ‘‘economic’’ (primary)
controlled variables (CV1) for the supervi-
sory control layer

2. Decision 2: Select ‘‘stabilizing’’ (secondary)
controlled variables (CV2) for the regulatory
control layer

3. Decision 3: Locate the throughput manipu-
lator (TPM), that is, where to set the produc-
tion rate

4. Decision 4: Select pairings for the stabilizing
layer, that is, pair inputs (valves) and con-
trolled variables (CV2).

Decisions 1 and 2 are illustrated in Figure 9,
where the matrices H and H2 represent a
selection, or in some cases a combination, of
the available measurements y.

This chapter deals with continuous operation
of chemical processes, although many of the
arguments hold also for batch processes.

3.2. Previous Work

Over the years, going back to the early work of
BUCKLEY [23] from DuPont, several approaches

have been proposed for dealing with plantwide
control issues. Nevertheless, taking into account
the practical importance of the problem, the
literature is relatively scarce. LARSSON and
SKOGESTAD [24] provide a good review and
divide into two main approaches. First, there
are the process-oriented (engineering or simu-
lation-based) approaches of [25–30]. One prob-
lem here is the lack of a really systematic
procedure and that there is little consideration
of economics. Second, there is the optimization
or mathematically oriented (academic) ap-
proaches of [31–35]. The problem here is that
the resulting optimization problems are intrac-
table for a plantwide application. Therefore, a
hybrid between the two approaches is more
promising [24, 36–40].

The first really systematic plantwide control
procedure was that of LUYBEN et al. [28, 29]
which has been applied in a number of simula-
tion studies. LUYBEN’s procedure consists of the
following nine steps

. L1: Establish control objectives

. L2: Determine control degrees of freedom

. L3: Establish energy management system

. L4: Set the production rate (decision 3)

. L5:Control product quality and handle safety,
environmental, and operational constraints

. L6: Fix a flow in every recycle loop and
control inventories

. L7: Check component balances

. L8: Control individual unit operations

. L9:Optimize economics and improve dynam-
ic controllability

‘‘Establish control objectives’’ in step L1
does not lead directly to the choice of controlled
variables (decisions 1 and 2). Thus, in LUYBEN’s
procedure, decisions 1, 2, and 4 are not explicit,
but are included implicitly in most of the steps.
Even though the procedure is systematic, it is
still heuristic and ad hoc in the sense that it is not
clear how the authors arrived at the steps or their
order. A major weakness is that the procedure
does not include economics, except as an after-
thought in step L9.

In this chapter, the seven-step plantwide
control procedure of SKOGESTAD [24, 39] is
discussed. It was inspired by the LUYBEN proce-
dure, but it is clearly divided into a top-down
part, mainly concerned with steady-state

Figure 9. Block diagram of control hierarchy illustrating
the selection of controlled variables (H andH2) for optimal
operation (CV1) and stabilization (CV2)
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economics, and a bottom-up part, mainly con-
cerned with stabilization and pairing of loops.
SKOGESTAD’s procedure consists of the following
steps:

1. Top-down part (focus on steady-state opti-
mal operation)
. S1: Define operational objectives (eco-
nomic cost function J and constraints)

. S2: Determine the optimal steady-state
operation conditions

. S3: Select ‘‘economic’’ (primary) con-
trolled variables, CV1 (decision 1)

. S4: Select the location of the throughput
manipulator (TPM) (decision 3)

2. Bottom-up part (focus on the control layer
structure)
. S5: Select the structure of the regulatory
(stabilizing) control layer (decisions 2
and 4)

. S6: Select the structure of the supervisory
control layer

. S7: Select structure of (or need for) the
optimization layer (RTO)

The top-down part (steps 1–4) is mainly
concerned with economics, and steady-state
considerations are often sufficient. Dynamic
considerations are more important for steps
4–6, although steady-state considerations are
important also here. This means that it is impor-
tant in plantwide control to involve engineers
with a good steady-state understanding of the
plant. A detailed analysis in step S2 and step S3
requires that one has a steady-state model avail-
able and that one performs optimizations for the
given plant design (‘‘rating mode’’) for various
disturbances.

3.3. Degrees of Freedom for
Operation

The issue of degrees of freedom for operation,
or control degrees of freedom, is often confus-
ing and not as simple as one would expect.
One issue is that the degrees of freedom
change depending on where one is in the con-
trol hierarchy. This is illustrated in Figures 8
and 9, where the degrees of freedom in
the optimization and supervisory control

layers are not the physical degrees of freedom
(valves), but rather the setpoints for the
controlled variables in the layer below. The
control degrees of freedom are often referred
to as manipulated variables (MVs) or inputs.
The physical degrees of freedom (dynamic
process inputs) are called ‘‘valves’’, because
this is usually what they are in process
control.

Steady-State DOFs (u). A simple approach
is to first identify all the physical (dynamic)
degrees of freedom (valves). However, because
the economics usually depend mainly on the
steady-state, variables that have no or negligible
effect on the economics (steady-state) should be
subtracted, such as inputs with only a dynamic
effect or controlled variables (e.g., liquid levels)
with no steady-state effect.

#steady-state degrees of freedom ðuÞ
¼ #valves�#variables with no steady-state effect

For example, even though a heat exchanger
may have a valve on the cooling water and in
addition have bypass valves on both the hot and
cold side, it usually has only one degree of
freedom at steady-state, namely the amount of
heat transferred, so two of these three valves
only have a dynamic effect from a control point
of view.

In addition, we need to exclude valves that
are used to control variableswith no steady-state
effect (usually, liquid levels). This is illustrated
in the following example.

Example: DOFs for Distillation: A simple
distillation column has six dynamic degrees of
freedom (valves): feed F, bottom product B,
distillate product D, cooling, reflux L, and heat
input. However, two degrees of freedom (e.g., B
and D) must be used to control the condenser
and reboiler levels (MB andMD) which have no
steady-state effect. This leaves four degrees of
freedom at steady-state. For the common case
with a given feed flow and a given column
pressure, only two steady-state degrees of free-
dom remain. Thus, for the economic analysis in
step S3, 2 controlled variables (CV1) need to be
selected associated with these. Typically, these
will be the top and bottom composition, but not
always.
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3.4. SKOGESTAD’s Plantwide Control
Procedure

Going through the SKOGESTAD procedure in
more detail, an existing plant is considered and
it is assumed that a steady-state model of the
process is available.

The top-down part is mainly concerned with
the plant economics, which are usually deter-
mined primarily by the steady-state behavior.
Therefore, although one is concerned about
control, steady-state models are usually suffi-
cient for the top-down part.

Step S1: Define Operational Objectives
(Cost J and Constraints). A systematic

approach to plantwide control requires that first
the operational objectives are quantified in
terms of a scalar cost function J [$/s] that should
be minimized (or equivalently, a scalar profit
function, P ¼ �J, that should be maximized).
This is usually not very difficult, and typically it
is:

J ¼ cost feedþcost utilities ðenergyÞ�value products ½$=s�

Fixed costs and capital costs are not included,
because they are not affected by plant operation
on the time scale considered (ca. 1 h). The goal
of operation (and of control) is to minimize the
cost J, subject to satisfying the operational
constraints (g � 0), including safety and envi-
ronmental constraints. Typical operational con-
straints are minimum and maximum values on
flows, pressures, temperatures, and composi-
tions. For example, all flows, pressures, and
compositions must be nonnegative.

Step S2: Determine the Steady-State Opti-
mal Operation. Before the control system

is designing the optimal way of operating the
process should be considered. For example, a
valve (e.g., a bypass) should always be closed.
This valve should then not be used for (stabiliz-
ing) control unless one is willing to accept the
loss implied by ‘‘backing off’’ from the optimal
operating conditions.

To determine the steady-state optimal oper-
ation, a steady-state model should be obtained.
Then the degrees of freedom and expected
disturbances need to be identified, and optimi-
zations for the expected disturbances should be
performed:

1. Identify steady-state degrees of freedom (u):
To optimize the process, the steady-state
degrees of freedom (u) have to be identified
as has already been discussed. Actually, it is
the number of u’s which is important, be-
cause it does not really matter which vari-
ables are included in u, as long as they make
up an independent set

2. Identify important disturbances (d) and their
expected range: Next, the expected range of
disturbances (d) for the expected future op-
eration have to be identified. The most im-
portant disturbances are usually related to the
feed rate (throughput) and feed composition,
and in other external variables such as tem-
perature and pressure of the surroundings.
Furthermore, changes in specifications and
constraints (such as purity specifications or
capacity constraints) and changes in para-
meters (such as equilibrium constants,
rate constants and efficiencies) should be
included as disturbances. Finally, the ex-
pected changes in prices of products, feeds,
and energy need to be included as
‘‘disturbances’’.

3. Optimize the operation for the expected
disturbances: Here, the disturbances (d) are
specified and the degrees of freedom
(uopt(d)) are varied in order to minimize the
cost (J), while satisfying the constraints. The
main objective is to find the constraints
regions (sets of active constraints) and the
optimal nominal setpoints in each region.

Mathematically, the steady-state optimiza-
tion problem can be formulated as

minu Jðu; x; dÞ
subject to:
Model equations: f ðu; x; dÞ ¼ 0
Operational constraints: gðu; x; dÞ � 0

Here u are the steady-state degrees of free-
dom, d are the disturbances, x are the internal
states, f ¼ 0 represents the mathematical model
equations and possible equality constraints (like
a given feed flow), and g � 0 represents the
operational constraints (like a maximum or
nonnegative flow, or a product composition
constraint). The process model, f ¼ 0, is often
represented indirectly in terms of a commercial
software package (process simulator), such as
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Aspen or Hysis/Unisim. This usually results in a
large, nonlinear equation set which often has
poor numerical properties for optimization.

Together with obtaining the model, the opti-
mization step S2 is often the most time consum-
ing step in the entire plantwide control proce-
dure. In many cases, the model may not be
available or one does not have time to perform
the optimization. In such cases a good engineer
can often perform a simplified version of step
S1–S3 by using process insight to identify the
expected active constraints and possible ‘‘self-
optimizing’’ controlled variables (CV1) for the
remaining unconstrained degrees of freedom.

A major objective of the optimization is to
find the expected regions of active constraints.
An important point is that one cannot expect to
find a single control structure that is optimal
because the set of active constraints will change
depending on disturbances and economic con-
ditions (prices). Thus, one should prepare the
control system for the future, by using off-line
analysis and optimization to identify regions of
active constraints. The optimal active con-
straints will vary depending on disturbances
(feed composition, outdoor temperature, prod-
uct specifications) and market conditions
(prices).

Generally there are two main modes of oper-
ation depending on market conditions:

. Mode I: Given throughput (buyers market).
This is usually the ‘‘nominal’’ mode for which
the control system is originally set up. Usual-
ly, it corresponds to a ‘‘maximize efficiency’’
situation where there is some ‘‘trade-off’’
between utility (energy) consumption and
recovery of valuable product, corresponding
to an unconstrained optimum.

. Mode II: Maximum throughput (sellers mar-
ket). When the product prices are sufficiently
high compared to the prices of raw materials
(feeds) and utilities (energy), it is optimal to
increase the throughput as much as possible.
However, as one increases the feed rate, one
will usually encounter constraints in various
units, until eventually reaching the bottleneck
where a further increase is infeasible.

Step S3: Select ‘‘Economic’’ (Primary)
Controlled Variables, CV1 (Decision 1).

This is related to the implementation of the

optimal operation points found in step S2 in a
robust and simple manner. To make use of all
the economic degrees of freedom (inputs u), as
many economic controlled variables (CV1) as
there are inputs (u) need to be identified. In
short, the issue is: What should be controlled?

1. Identify candidate measurements (y) and
their expected static measurement error (ny).
In general, in the set y all inputs (valves)
should be included to allow, for example, for
the possibility of keeping an input constant.

2. Select primary (economic) controlled vari-
ables, CV1 ¼ Hy (decision 1), among the
candidatemeasurements (see Fig. 9), usually
by selecting individual measurements. One
needs to find one CV1 for each steady-state
degree of freedom (u)

For economic optimal operation, the rules for
CV1 selection are

1. Control active constraints
2. For the remaining unconstrained degrees of

freedom: Control ‘‘self-optimizing’’ vari-
ables with the objective of minimizing the
economic loss with respect to disturbances

The two rules are discussed in detail below.
In general, step S3 must be repeated for each
constraint region. To reduce the need for switch-
ing between regions, onemay consider using the
same CV1’s in several regions, but this is non-
optimal and may even lead to infeasibility.

Control Active Constraints. In general, the
obvious controlled variables to keep constant
are the active constraints. The active con-
straints come out of the analysis in step S2 or
may in some cases be identified based on
physical insight. The active constraints are
obvious ‘‘self-optimizing’’ variables and could
be input constraints (in the set u) or output
constraints.

Input constraints are trivial to implement;
the input is set at its optimal minimum or
maximum, so no control system is needed. For
example, if a very old car is operated then
optimal operation (defined as minimum driving
time, J¼ T) may be achieved with the gas pedal
at its maximum position.

For output constraints, a controller is needed,
and a simple single-loop feedback controller is
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often sufficient. For example, if there exists a
better car then the maximum speed limit (say
80 km/h) is likely an active constraint and
should be selected as the controlled variable
(CV1). To control this, one may use a ‘‘cruise
controller’’ (automatic control) which adjusts
the engine power to keep the car close to a given
setpoint. In this case, the speed limit is a hard
constraint and one needs to back off from the
speed limit (say to a setpoint of 75 km/h) to
guarantee feasibility if there is a steady-
state measurement error (ny) or a dynamic con-
trol error. In general, the backoff should be
minimized because any backoff results in a loss
(i.e., a larger J ¼ T) which can never be
recovered.

The backoff is the ‘‘safety margin’’ from the
active constraint and is defined as the difference
between the constraint value and the chosen
setpoint:

Backoff ¼ jConstraint�Setpoint j

In the car driving example: backoff¼ 5 km/h.
The active constraints should be selected as

CVs because the optimum is not ‘‘flat’’ with
respect to these variables. Thus, there is often a
significant economic penalty if one ‘‘backs off’’
from an active constraint, so tight control of the
active constraints is usually desired. If a con-
strained optimization method is used for the
optimization, then the loss can be quantified by
using the Lagrange multiplier l associated with
the constraint:

Loss ¼ l� backoff

For input (valve) constraints, usually no
backoff is needed, unless the input for stabili-
zation is used in the lower regulatory (stabiliz-
ing) layer because one needs some range to use
it for control. For output constraints two cases
exist:

. Soft output constraints (only average value
matters): Backoff ¼ measurement error
(bias ny)

. Hard output constraints (must be satisfied at
all times): Backoff¼measurement error (bias
ny) þ control error (dynamic)

To reduce the backoff, accurate measure-
ments of the constraint outputs are necessary,
and for hard output constraints one also needs

tight control with a small dynamic control error.
The squeeze and shift rule for hard output
constraints indicates: By squeezing the output
variation, the setpoint can be shifted closer to its
limit (i.e., reduce the backoff). For soft output
constraints, only the steady-state control error
matters, which will be zero if the controller has
integral action.

Control ‘‘Self-optimizing’’ Variable Which
WhenHeldConstant Keeps theOperationClose
to the Optimum in spite of Disturbances. It is
usually simple to identify and control the active
constraints. Themore difficult question is:What
should the remaining unconstrained degrees of
freedom be used for? Does it even make a
difference what is controlled? The answer is
‘‘yes’’!

As an example, optimal operation of a mara-
thon runner is considered where the objective is
to adjust the power (u) and to minimize the time
(J ¼ T). This is an unconstrained problem; a
marathon runner cannot simply run atmaximum
speed (u ¼ umax) as for a sprinter. A simple
policy is constant speed (c1¼ speed), but it is not
optimal if there are disturbances (d) caused by
wind or hilly terrain. A better choice is to run
with constant pulse (c2 ¼ pulse), which is easy
to measure with a pulse clock. With a constant
heart rate (c2¼constant), the speed (c1) will
increase when running downhill as one would
expect for optimal operation, so pulse (c2) is
clearly a better self-optimizing variable than
speed (c1). Self-optimizing means that when
the selected variables are kept constant at their
setpoints, then the operation remains close to its
economic optimum in spite of the presence of
disturbances [40]. One problem with the feed-
back is that it also introduces a measurement
error (noise) nywhich may also contribute to the
loss (see Fig. 9).

In the followingCV1¼ c. There are twomain
possibilities for selecting self-optimizing c ¼
Hy:

1. Single measurements as CV1’s (H is a selec-
tion matrix with a single 1 in each row/
column and the rest of the elements 0) are
selected

2. Measurement combinations as CV1’s are
used. Here, methods exist to find optimal
linear combinations c ¼ Hy, where H is a
‘‘full’’ combination matrix
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In summary, the problem at hand is to choose
the matrix H such that keeping the controlled
variables c¼Hy constant (at a given setpoint cs)
gives close-to-optimal operation in spite of the
presence of disturbances d (which shift the
optimum), and measurement errors ny (which
give an offset from the optimum).

Quantitative Approaches. Are there any
systematic methods for finding the matrix H,
that is, to identify self-optimizing c’s associated
with the unconstrained degrees of freedom?
Yes, and there are two main approaches:

1. ‘‘Brute force’’ approach: Given a set of
controlled variables c ¼ Hy, one computes
the cost J(c,d) when c is kept constant (c ¼
cs þ Hny) for various disturbances (d) and
measurement errors (ny). In practice, this is
done by running a large number of steady-
state simulations to try to cover the expected
future operation. Typically, expected ex-
treme values in the parameter space (for d
and ny) are used to compute the cost for
alternative choice of the controlled vari-
ables (matrix H). The advantage with this
method is that it is simple to understand and
apply and it works also for nonlinear plants
and even for changes in the active con-
straint. Only one nominal optimization is
required to find the setpoints. The main
disadvantage with the method is that the
analysis for each H is generally time con-
suming and one cannot guarantee that all
important cases are covered. In addition,
there exist an infinite number of choices for
H so one can never guarantee that the best
c’s are found.

2. ‘‘Local’’ approaches: Based on a quadratic
approximation of the cost. This is discussed
in more detail in [41].

The main local approaches are:

. Maximum gain rule: The maximum gain rule
says that one should control ‘‘sensitive’’ vari-
ables, with a large gain from the inputs (u) to c
¼ Hy. This rule is good for prescreening and
also yields good insight.

. Nullspace method: This method yields opti-
mal measurement combinations for the case
with no noise, ny ¼ 0. By simulations one

must first obtain the optimal measurement
sensitivity, F¼ dyopt/dd. Then, assuming that
the number of (independent) measurements y
is the sum of the number of inputs (u) and
disturbances (d), the optimal is to select H
such that HF ¼ 0. Note thatH is a nonsquare
matrix, soHF¼ 0 does not require thatH¼ 0
(which is a trivial uninteresting solution), but
rather that H is in the nullspace of FT.

. Exact local method (loss method): This ex-
tends the nullspace method to the case with
noise and to any number of measurements.
For details see [41].

For some practical applications of the null-
space method see [42].

Regions and Switching. New self-optimiz-
ing variables must be identified (off-line) for
each region, and switching of controlled vari-
ables is required as one encounters a new region
(on-line). In practice, it is easy to identify when
to switch when one encounters a constraint. It
seems less obvious when to switch out of a
constraint, but actually one simply has to moni-
tor the value of the unconstrained CVs from the
neighboring regions and switch out of the con-
straint region when the unconstrained CV
reaches its setpoint.

As an example, a recycle process is consid-
eredwhere it is optimal to keep the inert fraction
in the purge at 5% using the purge flow as a
degree of freedom (unconstrained optimum).
However, during operation there may be a
disturbance (e.g., increase in feed rate) so that
the recycle compressor reaches its maximum
load (e.g., because of constraint on maximum
speed). The recycle compressor was used to
control pressure, and since it is still optimal to
control pressure, the purge flow has to take over
this task. This means that one has to give up
controlling the inert fraction, which will drop
below 5%. In summary, one has gone from an
unconstrained operating region (I) where the
inert fraction is controlled to a constrained
region (II) where the compressor is at maximum
load. In region II, one keeps the recycle flow at
its maximum. How does one know when to
switch back from region II to region I? This is
done by monitoring the inert fraction, and when
it reaches 5% one switches back to controlling it
(region I).
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In general, one would like to simplify the
control structure and reduce the need for switch-
ing. This may require using a suboptimal CV1 in
some regions of active constraints. In this case
the setpoint for CV1 may not be its nominally
optimal value (which is the normal choice), but
rather a ‘‘robust setpoint’’ which reduces the
loss when operating outside the nominal con-
straint region.

Step S4. Select the Location of Throughput
Manipulator (TPM) (Decision 3). The

main purpose of a process plant is to transform
feedstocks into more valuable products and this
involves moving mass through the plant. The
amount of mass moved through the plant, as
expressed by the feed rate or product rate, is
determined by specifying one degree of free-
dom, which is called the throughput manipula-
tor (TPM). The TPM or ‘‘gas pedal’’ is usually a
flow but not always, and it is usually set by the
operator (manual control). Some plants, e.g.,
with parallel units, may have more than one
TPM. TheTPM is usually at a fixed location, but
to get better control (with less backoff) one may
consider moving the TPM depending on the
constraint region.

Definition [44]: A TPM is a degree of free-
dom that affects the network flow and is not

directly or indirectly determined by the control
of the individual units, including their inventory
control.

The TPM has traditionally been placed at the
feed to the plant. One important reason is that
most of the control structure decisions are done
at the design stage (before the plant is built)
where the feed rate is considered fixed, and there
is little thought about the future operation of the
plant where it is likely that one wants to maxi-
mize the feed (throughput). However, the loca-
tion of the TPM is an important decision that
links the top-down and bottom-up part of the
procedure.

Where Should the TPM (‘‘Gas Pedal’’) be
Located for the Process?

In principle, the TPM may be located any-
where in the plant, although the operators often
prefer to have it at the feed, so this will be the
default choice. From a purely steady-state point
of view, the location of the TPM does not
matter, but it is important dynamically. First,
it may affect the control performance (backoff
from active constraints), and second, as soon as
the TPM has been placed, the radiation rule
(Fig. 10) determines the structure of the regula-
tory layer.

There are two main concerns when placing
the throughput manipulator (TPM):

Figure 10. Radiation rule: Local consistency requires a radiating inventory control around a fixed flow (TPM) [43, 44]
a) TPM at inlet (feed): Inventory control in direction of flow; b) TPM at outlet (on demand): Inventory control in direction
opposite to flow; c) General case with TPM inside the plant: Radiating inventory control
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. Economics: The location has an important
effect on economics because of the possible
backoff if active constraints are not tightly
controlled, in particular, for the maximum
throughput case where tight control of the
bottleneck is desired. More generally,
the TPM should then be located close to the
bottleneck to reduce the backoff from the
active constraint that has the largest effect on
the production rate.

. Structure of regulatory control system: Be-
cause of the radiation rule [43], the location of
the throughput manipulator has a profound
influence on the structure of the regulatory
control structure of the entire plant (see
Fig. 10).

An underlying assumption for the
radiation rule, is that we want ‘‘local consis-
tency’’ of the inventory control system [44].
This means that the inventory in each unit is
controlled locally, that is, by its own in- or
outflows. In theory, one may not require local
consistency and allow for ‘‘long’’ inventory
loops, but this is not common for obvious
operational reasons, including risk of emptying
or overfilling tanks, startup and tuning, and
increased complexity.

Most plants have one ‘‘gas pedal’’ (TPM),
but there may be more than one TPM for plants
with parallel units, splits, and multiple alterna-
tive feeds or products. The feeds usually need to
be set in a fixed ratio, so adding a feed usually
does not give an additional TPM. For example,
for the reaction AþB! C, we need to have the
molar ratio FA/FB close to 1 to have good
operation with small loss of reactants, so there
is only one TPM even if there are two feeds, FA

and FB.
If only a part of the process is considered,

then this part may have no TPM. Instead, there
will be a given flow, typically a feed or product,
that acts as a disturbance on this part process,
and the control system must be set up to handle
this disturbance. One may also view this as
having the TPM at a fixed location. For exam-
ple, for a utility plant the product rate may be
given and in an effluent treatment plant the feed
rate may be given. On the other hand, a closed
recycle system, like the amine recycle in a
CO2 gas-treatment plant, introduces an extra
TPM.

Moving the TPM During Operation. Pref-
erably, the TPM should be in a fixed location.
First, it makes it simpler for the operators, who
usually are the ones who set the TPM, and,
second, it avoids switching of the inventory
structure, which should be ‘‘radiating’’ around
the TPM (Fig. 10). However, since the TPM in
principle may be located anywhere, it is tempt-
ing to use its location as a degree of freedom
and move it to improve control performance
and reduce backoff. The following rule is
proposed:

To get tight control of the new active con-
straint and achieve simple switching, locate the
TPM ‘‘close’’ to the next active constraint (such
that theTPMcan be used to achieve tight control
of the constraint when it becomes active).

The rule is based on economic considerations
with the aim of simplifying the required switch-
ing when the next capacity constraint becomes
active. However, moving the TPM may require
switching regulatory loops, which is usually not
desirable.

Step S5. Select the Structure of Regulatory
(Stabilizing) Control Layer. The main pur-

pose of the regulatory layer is to ‘‘stabilize’’ the
plant, preferably using a simple control struc-
ture with single-loop PID controllers. ‘‘Stabi-
lize’’means that the process does not ‘‘drift’’ too
far away from acceptable operation when there
are disturbances. The regulatory layer is the
fastest control layer, and is therefore also used
to control variables that require tight control,
like economically important active constraints
(recall the ‘‘squeeze and shift’’ rule, see stepS3).
In addition, the regulatory layer should follow
the setpoints given by the supervisory layer (see
below).

The main decision is step S5 are to (i) select
controlled variables (CV2) (decision 2) and (ii)
to select inputs (valves) and ‘‘pairings’’ for
controlling CV2 (decision 4). Interestingly, de-
cision (i) on selecting CV2 can often be based
mostly on steady-state arguments, whereas dy-
namic issues are the primary concern when
selecting inputs (valves) and pairings.

No degrees of freedom have to be ‘‘used up’’
in the regulatory control layer because the set-
points CV2’s are left as manipulated variables
(MVs) for the supervisory layer (see Fig. 9).
However, one does ‘‘use up’’ some of the time
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window as given by the closed-loop response
time (bandwidth) of the stabilizing layer.

Step S5(a) Select ‘‘Stabilizing’’ Controlled
Variables CV2 (Decision 2). These are typ-

ically ‘‘drifting’’ variables such as inventories
(level and pressure), reactor temperature, and
temperature profile in distillation column. In
addition, active constraints (CV1) that require
tight control (small backoff) may be assigned to
the regulatory layer. On the other hand, it is
usually not necessary with tight control of un-
constrained CV1’s because the optimum is usu-
ally relatively flat.

To select systematically the stabilizing CV2

¼ H2y, one should consider the behavior of the
‘‘stabilized’’ or ‘‘partially controlled’’ plant
with the variables CV2 being controlled (see
Fig. 9), taking into account the two main objec-
tives of the regulatory layer:

. Local disturbance rejection (indirect control
of primary variables CV1): With the vari-
ables CV2 controlled, the effect of the dis-
turbances on the primary variables CV1

should be small. This is to get ‘‘fast’’ control
of the variables CV1, which may be impor-
tant to reduce the control error (and thus the
backoff) for some variables, like active out-
put constraints

. Stabilization (minimize state drift): More
generally, the objective is to minimize the
effect of the disturbances on the (weighted)
states x. This is to keep the process in the
‘‘linear region’’ close to the nominal steady-
state and avoid that the process drifts into a
region of operation where it is difficult to
recover. The advantage of considering some
measure of all the states x is that the regulatory
control system is then not tied to a particular
control objective (CV1) which may change
with time, depending on disturbances and
prices

When considering disturbance rejection and
stabilization, it is the behavior at the closed-loop
time constant of the above supervisory layer,
which is of main interest. Since the supervisory
layer is usually relatively slow, it is again (as
with the selection of CV1) usually sufficient to
consider the steady-state behavior when select-
ing CV2 (however, when selecting the

corresponding valves/pairings in step 5b, dy-
namics are the key issue).

Step S5(b) Select Inputs (Valve) for Con-
trolling CV2 (Decision 4). Next, one needs

to find the inputs (valves) that can be used to
control CV2. Normally, single-loop (decentra-
lized) controllers are used in the regulatory
layer, so the objective is to identify pairings.
The main rule is to ‘‘pair close’’ so that the
dynamic controllability is good with a small
effective delay and so that the interactions
between the loops are small. In addition, the
following should be taken into account:

. ‘‘Local consistency’’ for the inventory con-
trol [44]. This implies that the inventory
control system is radiating around the given
flow

. Tight control of important active constraints
(to avoid backoff)

. Variables (inputs) that may optimally saturate
(steady-state), should be avoided as MVs in
the regulatory layer, because this would re-
quire either reassignment of regulatory loop
(complication penalty), or backoff for theMV
variable (economic penalty)

. Reassignments (logic) in the regulatory layer
should be avoided. Preferably, the regulatory
layer should be independent of the economic
control objectives (regions of steady-state
active constraints), which may change de-
pending on disturbances, prices, and market
conditions. Thus, it is desirable that the
choices for CV1 (decision 1) and CV2 (deci-
sion 2) are independent of each other.

In order to make the task more manageable,
the choice of the regulatory layer structure,
may be divided into step S5.1: Structure of
inventory control layer (closely related to step
S4) and step S5.2: Structure of remaining
regulatory control system, butwe here consider
them combined.

Step S6. Select Structure of Supervisory
Control Layer. The supervisory or ‘‘ad-

vanced control’’ layer has three main tasks:
Task 1. Control the Primary (Economic)

Controlled Variables (CV1) using as MVs the
setpoints to the regulatory layer plus any re-
maining (‘‘unused’’) valves (see Fig. 9).
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. The supervisory layer may use ‘‘dynamic’’
degrees of freedom, including level setpoints,
to improve the dynamic response (at steady-
state these extra variables may be ‘‘reset’’ to
their ideal resting values)

. The supervisory layer may also make use of
measured disturbances (feedforward control)

. Estimators: If the primary controlled vari-
ables (CV1) are not measured, typically com-
positions or other quality variables, then ‘‘soft
sensors’’ based on other available measure-
ments may be used for their estimation. The
‘‘soft sensors’’ are usually static, although
dynamic state estimators (Kalman filter, mov-
ing horizon estimation) may be used to im-
prove the performance. However, these are
not common in process control, because the
supervisory layer is usually rather slow

Task 2. Supervise the Performance of the
Regulatory Layer. The supervisory layer should
take action to avoid saturation of MVs used for
regulatory control, which otherwise would re-
sult in loss of control of some ‘‘drifting’’ vari-
able (CV2).

Task 3. Switch Controlled Variables and
control strategies when disturbances or price
changes cause the process to enter a new region
of active constraints.

Implementation. There are two main alter-
natives in terms of the controller used in the
supervisory layer:

. ‘‘Advanced single loop control’’ ¼ PID con-
trol with possible ‘‘fixes’’ such as feedforward
(ratio), decouplers, logic, selectors and split
range control (in many cases some of these
tasks aremoved down to the regulatory layer).
With single-loop control an important deci-
sion is to select pairings. Note that the issue of
finding the right pairings is more difficult for
the supervisory layer because the interactions
are usually much stronger at slower time
scales, so measures such as the relative gain
array (RGA) may be helpful.

. Multivariable control (usually MPC). Al-
though switching and logic can be reduced
when using MPC, it cannot generally be
completely avoided. In general, it may be
necessary to change the performance objec-
tive of the MPC controllers as we switch
regions.

Step S7. Structure of (and Need for)
Optimization layer (RTO) (Related to
Decision 1). The task of the RTO layer is

to update the setpoints for CV1, and to detect
changes in the active constraint regions that
require switching the set of controlled variables
(CV1).

In most cases, with a ‘‘self-optimizing’’
choice for the primary controlled variables, the
benefits of the RTO layer are too low to justify
the costs of creating and sustaining the detailed
steady-state model which is usually required for
RTO. In addition, the numerical issues related to
optimization are very hard, and even off-line
optimization is difficult.

3.5. Comparison of the Procedures
of LUYBEN and SKOGESTAD

The most striking difference between the two
procedures is that whereas the SKOGESTAD pro-
cedure starts with economics (part I), the
LUYBEN procedure does not explicitly include
economics, except at the very last stage.

Step L1. Establish Control Objectives. By
‘‘control objectives’’, LUYBEN means the prima-
ry CVs but the LUYBEN procedure is unclear
about how these should be selected. It is stated
that ‘‘this is probably the most important aspect
of the problem because different control objec-
tives lead to different control structures’’, but
the only guideline is that ‘‘these objectives
include reactor and separation yields, product-
quality specifications, product grades and de-
mand determination, environmental restric-
tions, and the range of safe operating
conditions.’’

In the SKOGESTAD procedure, the first step is to
define the cost function and the process con-
straints (step S1) and optimize the operation
(step S2). The selection of CVs follows from
this (step S3). The first thing is to control the
active constraints. This will generally include
product-quality specifications on valuable pro-
ducts (cheap products should often be overpur-
ified to avoid losses of more valuable compo-
nents), minimum product rates (demands), en-
vironmental and safety constraints, pressure and
temperature constraints, and so on. For output
constraints one may have to introduce a safety
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factor (‘‘backoff’’) which will imply an eco-
nomic loss. To reduce the backoff for hard
output constraints one wants tight control,
which may imply that some of these variables
are controlled in the regulatory layer.

Step L2 (and Step S2a). Determine Control
Degrees of Freedom. This is an important

step in both procedures, but in the SKOGESTAD
procedure it comes before the selection of CVs,
which is reasonable because we need to identify
one CV for each degree of freedom. In addition,
in SKOGESTAD’s procedure one distinguishes
clearly between the steady-state degrees of
freedom (step S2a) and the physical degrees of
freedom (valves, step S5b).

LUYBEN states that most of the control de-
grees of freedom (valves) are used to achieve
basic regulatory control of the process: ‘‘(i) set
production rate, (ii) maintain gas and liquid
inventories, (iii) control product qualities, and
(iv) avoid safety and environmental con-
straints’’. He adds that ‘‘any valves that remain
after these vital tasks can be utilized to enhance
steady-state economic objectives or
controllability’’.

This is in agreement with the SKOGESTAD
procedure. Many of these variables are related
to optimal active constraints. Control of gas
inventories (pressures) is usually required to
stabilize the plant (avoid drift), but note that
one does not really ‘‘consume’’ any degrees of
freedom here because the pressure setpoint can
be used as a degree of freedom for effecting the
economic (steady-state) operation. With liquid
inventories (levels) the situation is a bit different
becausemany liquid levels do not have a steady-
state effect.

Step L3. Establish Energy Management
System. It seems a bit unclear why this issue

is so high up on the list in the LUYBEN procedure
and what is so special about control of the
energy system. Of course, an unstable exother-
mic reactor needs to be stabilized and selecting
an appropriate sensitive variable (typically, a
temperature) and pairing it with an input (MV)
will be one of the first issues when designing the
regulatory control system (step S5). However,
since stabilizing control does not ‘‘use up’’ any
degrees of freedom at steady-state, this may not
be in conflict with the objectives of optimal

economic operation, which is the third step (or
actually Step S2b) in SKOGESTAD’s procedure.

Step L4 (¼ Step S4). Set the Production
Rate. Note that in this work the terms

‘‘production rate’’ and ‘‘throughput’’ mean the
same. As discussed in detail above, the location
of the throughput manipulator (TPM) is very
important, both for economic reasons (steady-
state) and for dynamic reasons. For economic
reasons, it should be close to the bottleneck in
order to reduce the backoff when it is optimal to
maximize production (sellers market) [39]. Dy-
namically, it determines the structure of the
inventory control system, which is ‘‘radiating’’
around the TPM [43].

Traditionally, themain process feed has been
selected as the ‘‘gas pedal’’ (TPM). However,
LUYBEN et al. [29] recommend to locate it close
to the reactor: ‘‘Establish the variables that
dominate the productivity of the reactor and
determine the most appropriate TPM’’. Again,
the reasoning for focusing on the reactor is a bit
unclear, and it is worth mentioning that the
location of the TPM is also an important deci-
sion in plants with no reactor, like a gas proces-
sing plant [45]. Nevertheless, the reactor is
obviously an important unit and will often be
the bottleneck for the process. In addition, there
is usually recycle around the reactor, and by
locating the TPM in this recycle loop one can
avoid the ‘‘snowball effect’’ and satisfy
LUYBEN’s rule L6 of ‘‘fixing a flow in every
recycle loop’’.

Step L5. Control Product Quality and Han-
dle Safety, Environmental and Operational
Constraints. LUYBEN says that we should

‘‘select the best variables to control each of
the product-quality, safety and environmental
variables’’, but he does not state what ‘‘best’’ is.
He adds that ‘‘we want tight control of these
important quantities for economic and opera-
tional reasons’’ which makes sense if these
variables are optimally active constraints.
Having performed an economic optimization
(step S2b), it is then also easy to determine
what these ‘‘best’’ variables are: They are active
constraints when we operate the plant such that
cost is minimized.

LUYBEN adds that ‘‘it should be noted that
establishing the product-quality loops first,
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before the material balance control structure, is
a fundamental difference between our plant-
wide control procedure and BUCKLEY’s [23]
procedure’’.

In this respect, the SKOGESTAD procedure is
something in between the LUYBEN and BUCKLEY

procedures. Similar to LUYBEN, it starts by iden-
tifying which variables should be controlled,
which typically includes some active product-
quality constraints. However, similar to
BUCKLEY, in the SKOGESTAD procedure the design
of the actual control system, including choice of
pairings, starts with the ‘‘stabilizing’’ loops,
including the material balance (inventory) con-
trol although it is recommended that control of
active constraints that required tight control for
economic reasons should be assigned to the
regulatory layer.

Step L6. ‘‘Fix aFlow inEvery Recycle Loop
and Control Inventories’’. The recycle split

adds a degree of freedom to the process, so it is
possible to fix a flow in every recycle loop. This
may be a good strategy from a regulatory and
dynamic point of view, but not generally from
an economic point of view. For example, if the
throughput in the plant is increased then it will
generally be economically optimal to increase
all flows, including the recycles.

LUYBEN argues that fixing a flow in the
recycle loop avoids the ‘‘snowball effect’’
where the recycle flowgrows out of bound [46].
Note that the ‘‘snowball effect’’ is caused by
having a unit, typically a reactor, which is too
small compared to the desired throughput. This
means that we are operating at high through-
puts where the unit indirectly is the bottleneck
of the process.

The systematic approach would be to per-
form an economic optimization with the
throughput as a degree of freedom (step
S2b), and from this the optimal control policy
will follow (step S3), which will give the
optimal way of handling the ‘‘snowballing’’.
In some cases, maximum production may cor-
respond to maximal recycle, which means that
‘‘snowballing’’ is optimal and the recycle flow
should simply be fixed at its maximum (e.g.,
maximum gas recycle [29, 47]). In other cases,
maximum recycle is not optimal because other
constraints are reached, and one needs to use a
flow in the recycle to control an optimally

active constraint (e.g., use the column feed
flow to control product composition in the
simple recycle system studied by [46] and later
by [48]). In yet other cases, there may be an
‘‘optimal maximum throughput’’ and one
needs to identify a self-optimizing variable
associated with the feed being an uncon-
strained degree of freedom.

Nevertheless, LUYBEN is obviously right that
with the TPM located outside the recycle loop,
and with all the flows inside the recycle loop on
inventory (level or pressure) control, one may
get ‘‘snowballing’’ inside the recycle loop if we
feedmore into the loop than its units can handle.
‘‘Snowballing’’ is clearly a ‘‘driftingmode’’ and
it is a task of the regulatory control system to
avoid drift (step S5). Snowballing is caused by
the positive feedback in the recycle loop, and
one way to break this loop is to follow LUYBEN

and fix a flow in the recycle loop (including
selecting it as a TPM). This forces the excess
feed to exit the recycle loop. Another option,
which is likely to be better economically, is to
use one of the flows in the recycle loop to control
some other variable, like a sensitive temperature
or composition.

In summary, the importance of the ‘‘snow-
ball’’ effect has probably been overemphasized
in some of the literature on plantwide control. If
it is actually a ‘‘problem’’, then it cannot be
economically optimal, so it will automatically
be avoided by following the procedure of SKO-
GESTAD. Nevertheless, one should be aware of
the ‘‘snowballing’’ that may occur if all the
flows inside the recycle loop are on level or
pressure control.

L7. Check Component Balances. ‘‘Identify
how chemical components enter, leave, and are
generated or consumed in the process (downs
drill). This is a very important issue, even for
processes without reactions, and is included in
step S5 (regulator control strategy) in the
SKOGESTAD procedure.

L8. Control Individual Unit Operations.
This step seems a bit arbitrary, as application
of the previous steps will ‘‘automatically’’
lead to control of the individual units. Of
course, it can be useful to compare the resulting
control structure with common rules of thumb
for individual units and consider changes if
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it seems unreasonable. The SKOGESTAD

procedure contains many steps where choices
are made, so some iteration may be needed.

L9. Optimize Economics and Improve
Dynamic Controllability. LUYBEN writes

that ‘‘after satisfying all of the basic regulatory
requirements, we usually have additional de-
grees of freedom involving control valves that
have not been used and setpoints in some con-
trollers that can be adjusted. These can be
utilized either to optimize steady-state econom-
ic process performance or to improve dynamic
response.’’ This statement is true, but it is better
to consider the economics much earlier. First of
all, an economic analysis is generally needed in
order to identify the optimal active constraints
(in step L1), so one may as well identify good
self-optimizing CVs for the remaining uncon-
strained degrees of freedom. Second, if one
knows the self-optimizing variables, then one
can take this into account when designing the
regulatory control system.

3.6. Conclusion

Control structure design deals with the
structural decisions of the control system, in-
cluding what to control and how to pair the
variables to form control loops. Although
these are very important issues, these decisions
are in most cases made in an ad hoc fashion,
based on experience and engineering insight,
without considering the details of each
problem. Therefore, a systematic procedure
for control structure design for complete chem-
ical plants (plantwide control) is presented. It
starts with carefully defining the operational
and economic objectives, and the degrees of
freedom available to fulfil them. Then the
operation is optimized for expected future
disturbances to identify constraint regions. In
each region, one should control the active
constraints and identify ‘‘self-optimizing’’
variables for the remaining unconstrained de-
grees of freedom. Following the decision on
where to locate the throughput manipulator
(TPM), one needs to perform a bottom-up
analysis to determine secondary-controlled
variables and a structure of the control system
(pairing).

4. Process Control of Batch
Processes

4.1. Introduction

A large number of products in the chemical
industries are made in multiproduct and multi-
purpose plants containing batch reactors and
other batch processes. Biological and biochem-
ical processes, for example, which play an
increasing role in the production of fine chemi-
cals and pharmaceuticals, are almost exclusive-
ly produced in batch or semibatch (fed-batch).
Reasons for using batch processes are that in
batch reactors higher conversion can be reached
compared to continuous stirred-tank reactors
and that the throughput can be varied without
varying the residence time. The flexibility of
batch processes is in general much higher than
for continuous production, for example, the
production of different grades or different pro-
ducts in the same equipment is possible. Scale-
up from the laboratory is often easier as it does
not require changes of the types and the se-
quence of operations. Batch processes are ro-
bust to inaccurate and insufficient knowledge. A
typical example is emulsion copolymerization
which is very complex to model but has been
operated successfully in the industry since the
1940s [49–52]. Furthermore, in contrast to con-
tinuous processes, solids can be handled more
easily in batch processes.

The flexibility of batch plants may, however,
lead to more unproductive periods of time and
possible product cross-contamination. Control
is often more challenging in comparison to
continuous plants, as there is no fixed operating
point. The need for planning and scheduling of
production sequences, cleaning steps, and chan-
geovers is typical for batch processes.

Batch processes often involve transforma-
tionswhich are substantiallymore complex than
those realized in continuous processes, and
comprehensive models of the processes often
are not available. Therefore, the operation of
such processes is to a large extent based on
experience, and additional processing time or
additional processing steps are used if the anal-
ysis of the product reveals quality problems.
Such additional steps and varying batch times
increase the complexity of planning and sched-
uling. Today, due to tougher competition,

24 Process Systems Engineering, 5. Process Dynamics, Control, Monitoring, and Identification



advances inmodeling and increasing computing
power, model-based methods are increasingly
employed to operate batch processes efficiently.

A definition of a batch process is given
by [53]: A batch process is a process that leads
to the production of finite quantities of material
by subjecting quantities of input materials to an
ordered set of processing activities over a finite
period of time using one or more pieces of
equipment. Semibatch processes where one or
more substances are fed or withdrawn continu-
ously during (part of) a batch run are a special
and important class of batch processes. A batch
plant is a chemical plant that contains one or
more operations performed in batch.

Batch processes are defined by recipes. A
recipe is the necessary set of information that
uniquely defines the production steps that are
needed to produce a specific product. It contains
the amounts of rawmaterials and the processing
instructions to make the product [53].

For batch process management, NAMUR
and ISA have developed recommendations
(NE33 [54] and NE59 [55]) and standards
(S88 [53] and S95 [56]). Theoretical founda-
tions and application examples of the optimiza-
tion of single-batch runs are well covered in the
open literature.

4.2. Batch Process Management

4.2.1. Recipe-Driven Operation Based on
ANSI/ISA-88 (IEC 61512-1)

The US standard ANSI/ISA-88.01 ‘‘Batch Con-
trol’’ [53] which has been extended and accept-
ed as the international standard IEC 61512
‘‘Batch Control’’ [57, 58] proposes a standard
batch control architecture and recommended
practice for the implementation of batch control
systems. It is based on the earlier NAMUR
recommendation NE33 [54].

The standard defines a terminology that fa-
cilitates the understanding between the devel-
opers of batch-control solutions and the end
users using the concept of recipe-driven pro-
duction that describes how batch plants can be
operated in a flexible, yet efficient manner.
Figure 11 gives an overview of the models
defined in IEC 61512-1 [57]. The layers in the
figure are hierarchical and each entity may

contain many instances of the entities of the
lower layers and of the same layer. For example,
an equipment module can be made up of many
equipment and control modules.

The standard IEC 61512-1 defines three
models, the process model, the physical model,
and the control model.

The process model assists the engineer to
answer the questions ‘‘What should be pro-
duced?’’ and ‘‘How should it be produced?’’
IEC 61512-1 defines that the process should be
divided into process stages. Subdivisions of a
process stage are one or more process opera-
tions with major processing activities. Process
actions contain minor processing activities that
are combined to realize a process operation. The
process and the subprocesses are defined inde-
pendent of the configuration of the actual equip-
ment where the process is realized. Figure 11C
shows on the right-hand side an example of a
process with three different types of raw mate-
rials (A, B, C) and one product (D).

The physical model assists the engineer to
answer the question ‘‘Where should it be done?’’
A batch process is run in a plant (called process
cell in IEC 61512-1). In order to be able to map
the requirements of the process model to the
equipment it is important to divide the process
cell into units based upon the piping and instru-
mentation diagram (P&ID) ! Chemical Plant
Design and Construction, Section 3.4.4. The
subdivision is depicted in Figure 11B. The units
may contain equipment modules. Equipment
modules contain equipment and at least one
actuator and possibly a control loop with one
or more sensors. If an equipment module is
complex, it might be helpful to divide it further
into different control modules.

The standard considers three further layers
(enterprise, site, and area) above the process
cell that are not shown in Figure 11 because they
are not directly relevant for batch-process
control. The reader is referred to the recommen-
dation NE59 [55] or the standard ANSI/ISA-
95 [56]. These layers are addressed by
enterprise resource planning (ERP) and
manufacturing execution systems (MES).
These systems offer functions such as recipe
management, production planning, and overall
equipment effectiveness monitoring.
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The control model assists the engineer to
answer the question ‘‘What exactly should be
done?’’ (Fig. 11C). The control model is built
from procedures. The procedure is the highest
level in the hierarchy and defines the strategy to
perform the desired transformations, for exam-
ple, ‘‘production of polystyrene’’. Procedures
can be built using the standard EN 60848
GRAFCET or sequential function charts (SFC:
IEC 61131-3). Unit procedures consist of an
ordered set of operations to take place within a
unit. An example for an operation would be
‘‘polymerization’’. Operations define major
processing sequences, preferably between
points where the process can be suspended such
as ‘‘heat’’ or ‘‘charge’’. A phase specifies the
exact commands that are sent to the controlled
equipment and the conditions for these com-
mands in terms of sensor readings or time
elapsed. A sequence of phases realizes an
operation.

This multiple hierarchical structure facili-
tates the understanding of the processes and in

particular the use of the same equipment and the
same control routines in different recipes aswell
as the use of different pieces of equipment to
perform the same part of a recipe.

4.2.2. Recipes

IEC 61512-1 [57] defines a recipe as ‘‘the
necessary set of information that uniquely de-
fines the production requirements for a specific
product’’ and recommends a hierarchy of re-
cipes as shown in Table 1 to reduce the com-
plexity to manageable parts and to maintain
coherence of the different recipes. The hierar-
chical layers correspond to the scale of the
application. Table 1 also explains the content
that is expected on the different levels of the
hierarchy.

Using all four types of recipe is the most
complex situation in a distributed enterprise and
not always necessary. Master and control
recipes are used inmost automated batch plants.

Figure 11. Models for the description of batch processes according to IEC 61512-1 [57]
A) Control model; B) Physical model; C) Process model
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4.2.3. Control Hierarchy

The extended control hierarchy depicted in
Figure 12 shows a hierarchical view of the
control systems that are involved in the opera-
tion of a batch process and their interactions.

Safety control, often implemented in a fail-
safe programmable logic controller PLC or
emergency shutdown system (ESD), has the
highest priority of control to guarantee the
safety of humans, machines and the environ-
ment. Basic logic control implements elemen-
tary sequences and operational interlocks. Basic
regulatory control establishes the desired pro-
cessing conditions. It obtains the set points from
advanced process control, from the recipes or
from the operators. Sequential control estab-
lishes the logic of the control model, for exam-
ple start-up and shut-down procedures. The
production procedure is defined in the control
recipe which is executed in the batch controller
which can be part of the distributed control
system (DCS), the MES, or even the ERP
system.

4.2.4. Sequential and Logic Control

Control of batch processes is dominated by
sequential control. Due to the nature of the
process it is necessary to go through a number
of steps from start to end. The output and the
next state of a sequential control system depend
on the current input as well as on its internal
state. Practical implementations use SFC of
GRAFCET as a graphical programming lan-
guage. SFC is based on three elements: ‘‘steps’’,
‘‘actions’’, and ‘‘transitions’’ (see Fig. 13).
GRAFCET or SFC can be used to specify the
recipes as well as to specify the detailed control
sequences.

4.2.5. Regulatory Control

Regulatory control in batch plants has to
cope with continuously or abruptly varying
behavior of the process. Often the sequential
controllers change set-points, measurement
and output ranges, or the parameters of

Table 1. Hierarchy of recipes

Recipe-type Level

General recipe— enterprise level:

. basis for one or more site recipes

. contains the processing information for a specific product

. basis for enterprise-wide planning

Site recipe— site level:

. basis for one or multiple master recipes that are specific for process cells

. contains site-specific data like raw material qualities, formulae which cover input–output material

relationships

. may be defined independently or be a refinement of a general recipe

Master recipe— plant level:

. defines the procedure depicted in Figure 11 for a specific processing cell

. may be defined independently or be a refinement of a site recipe which is adjusted to a specific

process cell

. does not contain all information needed to produce a specific batch

Control recipe— batch level:

. contains all information to produce a batch of material in a processing cell.

. is executed by the batch controller

. may be changed during production by the operator to work around equipment

or quality problems

. is a refinement of a master recipe which is extended by data as, e.g., the set of equipment,

the amount of material, and a unique batch ID
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proportional–integral–derivative (PID) con-
trollers. Typically more disturbances are
encountered in a batch plant compared to a
continuous plant due to the variability and the
discontinuity of the process.

From a controller design point of view, a
time-varying behavior is added because batch
and semibatch processes have no single
operating point but follow a trajectory with
constantly changing conditions of the reaction

Figure 12. Extended control hierarchy: A control-oriented view on control systems in a chemical plant (expanded from [59])
A) Application station; B) DCS or PLC; C) Fail safe PLC; D) Process
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or the separation alongwhich the parameters of
linear controllers often need to be adjusted.

4.2.6. Planning and Scheduling in Multi-
purpose and Multiproduct Plants

Planning and scheduling is very important for
multipurpose and multiproduct plants. In these
plants several different kinds of recipes can be
executed on different pieces of equipment to
produce different products for varying market
demands, sequentially and in parallel. This
leads to a large number of decisions that have
to been taken. Planning usually involves:

. Forecasting: Orders for raw materials with
large lead-times are issued at the corporate
level based on the forecast of the demand for
products.

. Assignment of the orders of products: Orders
are normally received at the corporate level
and are then assigned to individual plants for
(partial) production and shipment.

. Batch sizing and campaign planning: The
number and sizes of the individual batches
are determined and it is decided whether the
production is performed in a campaign mode
(many similar batches are produced in a se-
quence before a changeover to another prod-
uct is made).

4.3. Quality Control and Batch-
Process Monitoring

4.3.1. Measurement and Control of
Quality Parameters

Batch processes are advantageous if robustness
to unknown or unmeasured influences is re-
quired. This is often the case in chemical pro-
cesses that are not well understood or in bio-
processes during which the microorganisms do
not behave reproducibly. Measuring standard
and nonstandard properties during and at the end
of a batch is of crucial importance for batch
control.

Typical measurements in chemical and
biochemical processes that are available
during the batch run are temperatures,
pressures, volume or liquid level, and volumet-
ric or mass flow rates. Quality measurements
such as concentrations are often not available
and the equipment required for such measure-
ments is normally less robust and much more
expensive than for standard measurements.
This is why even for complex reaction systems
quality measurements are often performed on-
ly at the end of the batch or even only every few
batches by taking samples that are sent to
laboratories for analysis. If the product does
not meet the specifications, additional proces-
sing steps are required or the problem is solved

Figure 13. A simple SFC loop and transition types
A) Single-loop structure; B) Sequence selection; C) Simultaneous sequence
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by blending it with products from different
batches.

Typical examples of quality variables are:

. Concentrations and conversion in chemical
and biochemical processes, for example, re-
sidual monomer content in polymers or ste-
reochemical composition for pharmaceuticals.

. pH-value, conductivity, and other electro-
chemical measurements in applications that
use or reduce acidic compounds.

. Polymer chain length distributions in poly-
merization processes.

. Particle size distributions in emulsion and
dispersion-based processes such as emulsion
polymerization or crystallization.

The measurement of quality variables often
requires longmeasurement times and expensive
equipment. Nowadays sensing technology is
available that cover most quality parameters of
interest. Examples are:

. Optical measurement techniques such as
refractometers

. Paramagnetism for oxygen detection

. Gravimetry or coriolis meters for density
measurement

. (Gas) chromatography (GC) or high-perfor-
mance liquid chromatography (HPLC) for
compositions

. Ultrasound

. Spectroscopic measurement devices (e.g.,
NIR-,IR-,NMR-,Raman-,UV-spectrometers)

Many of the above devices do not measure
the quality variables directly and therefore need
to be calibrated extensively, often using stan-
dards and statistical techniques. In many cases
only samples are taken and analyzed in a labo-
ratory. Due to the resulting time delay, such
measurements can typically not be used for the
control of the current batch but in batch-to-batch
(or run-to-run) control.

The location of sensors in batch processes
can be classified into in situ, bypass, and
sample. In situ and bypass measurements are
usually nondestructive whereas sampling
always removes some product from the
process. Examples for in situ sensors are a
Raman probe or a pH probe in a reactor, for
bypass a coriolis densitometer, and for

sampling a gas chromatograph using a
removed sample.

The measurements can further be classified
into online (in quality control any result that
arrives within 60 s can be classified as on-line),
automatic (also classified as at-line) where the
result arrives automatically after a certain spe-
cific period of time without intervention, and
off-line or laboratory, where samples are re-
moved and analyzed in a separate location. For
process control the sampling period and the time
delay are important aspects.

Time delays as shown in Table 2 may pose a
serious problem in the control of batch process-
es with short batch times. Alternatives with
virtually no time delay are integral measure-
ments, such as ultrasound and density measure-
ments. The optimal device is one that provides
the parameters of interest on-line and in situ
while being inexpensive to buy and to run.
Practically a compromise has to be found be-
tween the cost for installation and maintenance
of the equipment, the effort for calibration, and
the benefit of the measurement for the control
strategy.

An alternative to the use of in situ measure-
ments is the use of inferential measurements
that employ process models. They can be real-
ized as static maps (due to the time-varying
nature of batch processes this can be problem-
atic), as dynamic state estimation techniques, or
by statistical methods.

4.3.2. Inferential Measurements

Measurements that are only available with large
time delays but also quality indicators that can
only be measured in a laboratory may be re-
placed by inferential measurements. ‘‘Inferen-
tial measurement’’ is the general term for
quality parameters that are predicted using a

Table 2. Typical time delays of polymer quality measurements

Value measured Device Time delay

Conversion gravimetry 10 min

Molecular mass distribution gel permeation

chromatography

1 h

Particle size distribution

(PSD)

light scattering 10 min

Concentrations gas chromatography 15 min

or HPLC 10 min
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linear or nonlinearmodel that is calibrated using
measured process and laboratory data [60, 61].

The models are often black-box models !
Biotechnology, 5. Monitoring and Modeling of
Bioprocesses, Section 5.3. If a linear approach is
sufficient, statistical techniques such as princi-
ple component analysis (PCA) and projection
on latent structures (PLS) are applied.Nonlinear
black-box models can have many forms; exam-
ples are neural networks or fuzzy logic.

Rigorous first-principles models can also be
used but are often very complex and expensive
to derive. Especially in batch processes the
underlying phenomena might not even be
known at all. Sufficiently accurate inferential
measurements are usually more quickly ob-
tained using data-based black-boxmodel fitting.
If process knowledge in the form of a physical
model is available but some complex parts of the
process are not well understood, black-box
models can also be combined with physical
models to create so-called grey-box models, for
example, in emulsion polymerization [62].

4.3.3. State Estimation

In control theory, process parameters such
as temperatures, pressures, volumes, and

concentrations that change their values over
time are called process states. The vector of
the state variables is x(t), andu(t) is the vector of
the manipulated variables of the process.

Figure 14 shows a process model as a block
diagram. Some of the state variables can be
measured easily (but the measurement devices
are subject to disturbances) and some, for ex-
ample, concentrations, compositions,molecular
mass and particle size distributions, cannot–
with justifiable effort–be measured on-line or
can not at all be measured.

State estimation is a method to filter existing
measurements and to estimate unknown and un-
measurable states of a system. If a good dynam-
icmodel (physical- or data-based) of the process
exists, the easily available measurements can–
under certain conditions–be used to estimate the
unmeasured states. Figures 15 and 16 show two
possible concepts of state estimation in the form
of block diagrams. The superscript ^ indicates
the estimated states.

Open-Loop Observer. The differential or
algebraic states of a system that can be directly
measured are used as inputs to a dynamic model
which is simulated in parallel to the real process
(Fig. 15).

Figure 14. Block diagram of a state space system
a) Process; b) Sensors

Figure 15. Block diagram of the open-loop observer
a) Process; b) Sensors; c) (Reduced) process model
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A typical example of an open-loop observer
is the use of the estimated heat of reaction in a
polymerization reactor to estimate themonomer
concentrations [63]. The heat of reaction of the
exothermic process is calculated using reaction
calorimetry (see Section 4.3.4). This informa-
tion is then used in a dynamic model of the
process which is simulated in parallel to the
process in order to predict the monomer
concentrations.

Such an observer will follow the real states
well if the initial conditions are known and the
model is correct. Measurement noise may be
amplified by the described concept and errors in
the initial conditions and plant-model-mis-
match lead to wrong estimates [64, 65].

Closed-Loop Observer. A (closed-loop)
state estimator also simulates the process under
consideration but the errors between the mea-
sured states y(t) and the predicted measured
states y½ĉ�ðtÞ are used to correct the estimation
as shown in Figure 16. The major results
on linear state estimation were developed
by [66–68]. Methods to check the observability
of linear systems can be [66, 69, 70].

If the system is linear and observable and
plant-model-mismatch is small, the correction
term kðy�ŷ; x̂; uÞ ¼ K�ðy�ŷÞ which is linear in
the error y�ŷ will result in convergence of the
estimated states to the true values. This observer
is called the Luenberger Observer. The speed of
convergence can be adjusted by the choice of the
gain matrix K. Large error gains give fast con-
vergence but also amplify the measurement

noise. The compromise between fast conver-
gence and noise amplification is explicitly han-
dled by the Kalman filter (! Biotechnology, 5.
Monitoring andModeling of Bioprocesses, Sec-
tion 5.3) which has the same structure as the
observer in Figure 16. Here K is computed from
the covariance matrices of normally distributed
random disturbances that are assumed to act on
the measurements (measurement noise) and on
the evolution of the states (state noise).

In the nonlinear case the choice of
kðy�ŷ; x̂; uÞ is by no means trivial. Frequently
used solutions are based on linearizations
around a fixed operating point yielding a linear
observer, or on linearizations around the esti-
mated state, for example, the extended Kalman
filter (EKF, [71, 72]). As estimators based upon
linearizations are difficult to tune and may even
fail for strongly nonlinear plants, direct fully
nonlinear estimation schemes have been pro-
posed, for example, the moving horizon estima-
tor (MHE, [73, 74]). Another option is the use of
the unscented Kalman filter [75] or particle
filters [76].

A practical example for the application of an
EKF to a batch process is the estimation of the
heat of reaction and of the heat-transfer
coefficient simultaneously by heat-balance
calorimetry.

4.3.4. Calorimetry

In monitoring and control of batch reactors,
reaction calorimetry is widely used as a tool to

Figure 16. Block diagram of the closed-loop observer (dashed lines for nonlinear systems)
a) Process; b) Sensors; c) Process model; d) Sensor model
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determine the heat that is produced by the
reaction at a certain point in time ! Thermal
Analysis and Calorimetry, Chapter 2. The heat
of reaction can be used in combination with the
mass balances to determine the instantaneous
and the cumulative conversion of the different
species. For the safe operation of exothermic
reactions, knowledge about the heat-transfer
coefficient which governs the rate of energy
transferred between the reactor content and the
jacket is also crucial.

Classical reaction calorimetry is based on an
energy balance of a perfectly mixed tank reac-
tor. In real reactors isothermal conditions are
desired, as most reactions can be run best at a
certain temperature, but not always present,
especially during the start-up phase. The calo-
rimetric methods applied to production reac-
tors can be subdivided into heat-flow calorim-
etry in which the jacket temperature dynamics
are not considered and heat-balance calorime-
try which incorporates the jacket temperature
dynamics.

In heat-flow calorimetry only the differential
equation for the reactor temperature is used to
estimate the heat of reaction. In order to apply
heat-flow calorimetry, the evolutions of the
heat-transfer coefficient and of the heat-transfer
area need to be known precisely.

In heat-balance calorimetry the heat balances
of both the reactor and the jacket are considered.
If the reactor temperature and the temperatures
of the cooling fluid at the inlet and at the outlet of
the reactor as well as the coolant flow rate are
measured, the heat-transfer coefficient k and the
heat of reaction can be estimated simultaneous-
ly [77–81].

In small reactors, often only heat-flow calo-
rimetry can be used as the jacket inflow and
outflow temperatures are almost identical. Sim-
ilarly, the estimation of both the heat of reaction
and the heat-transfer coefficient by heat-balance
calorimetry fails if the temperature difference
between the jacket inlet and the jacket outlet
temperature is small.

In such cases an additional excitation of the
temperature control system must be used. This
can be done by the addition of a small sinusoidal
oscillation to the reactor temperature set point
and the exploitation of the gain and phase
shifts between the jacket and the reactor tem-
peratures, termed oscillation calorimetry [82].

An investigation of more general excitation
signals can be found in [83].

When applying reaction calorimetry, practi-
cal aspects that need to be considered are:

. Heat losses: Every process that operates at a
temperature higher than ambient temperature
experiences heat losses. It is often possible to
calibrate the reactor before the batch run and
to assume that the heat losses are constant.

. Measurement accuracy andnoise: For reaction
calorimetry, the temperature differences are
more important than the absolute values of the
temperatures. If temperature sensors are cali-
brated well, these differences can bemeasured
quite accurately. If the heat-transfer coeffi-
cient and the heat of reaction are estimated
simultaneously, the measurement noise will
be amplified because in essence the estimation
is based on derivatives of the temperatures.
Low pass filtering of the measurements of the
results can be applied to obtain a smoother but
slightly delayed estimate.

. Jacket flow rate used for control: In many
applications the jacket flow rate rather than
the jacket inlet temperature is used as a ma-
nipulated variable. If the range of the flow
rates used is large, two aspects have to be
considered. On the one hand, for small flow
rates the jacket may not behave like a stirred
tank and different approaches for the estima-
tion are necessary [84]. On the other hand, the
large span adds a nonlinearity that may re-
quire an on-line adjustment of the tuning of
the estimator and of the controller [33].

4.3.5. Detection of Abnormal Situations
and Statistical Process Control

The production of off-specification productmay
lead to a total loss of a batch. Advanced mea-
surement and state-estimation methods help to
detect abnormal batches early. There are, how-
ever, many batch processes where neither the
necessary measurements nor the required phys-
ical models are available to employ traditional
model-based control approaches. This motivat-
ed researchers to use statistical methods to
monitor and control batch processes [85–90].

An established method in batch operation is
(multiway) principle component analysis ((M)
PCA) (! Chemometrics, Section 9.1) and–if

Process Systems Engineering, 5. Process Dynamics, Control, Monitoring, and Identification 33



one or many quality variables are measured
during a batch run–the related projection on
latent structures, also known as (multiway)
partial least squares ((M)PLS) (! Chemo-
metrics, Section 11.2). These statistical techni-
ques were first used in chemometrics and later
found their way into the monitoring of continu-
ous processes and have since been adapted to
batch operation.

The use of PCA and statistical process
control consists of four steps:

1. Historical data of normal or good process
operation is collected and projected onto a
required number of principal components
using PCA

2. New process data is projected onto the sub-
space defined by the PCA loadings

3. The size of the projections is then compared
to a predefined statistical upper and lower
bound for the normal operation (normally
95% confidence bounds of HOTELLING’s T2-
distribution)

4. If the bounds are violated, contribution plots,
which identify the variables with the largest
influence on the observed deviation by dis-
playing their contribution, are used to iden-
tify the possible cause of the problem and to
enable the operators to take corrective
actions

In batch processes the data consists of several
time series of different variables for different
batches. Two principal ways are possible for
dealingwith this problem.The difference is how
the 3D data structure is unfolded and which
method is used for the data analysis. Figure 17
depicts the two methods.

MPCA unfolds the 3D matrix such that the
batches are sliced at each point in time. There-
fore, the single batches cannot be identified
directly after unfolding (Fig. 17A). One row
represents the set of variables changing with
time for one batch.

This way, the trajectory can be eliminated
by subtracting each column mean from the

Figure 17. Unfolding of the 3D batch-data matrix
A) Multiway principle component analysis (MPCA); B) The batch fingerprint method
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respective column. Thematrix then contains the
deviations from a mean trajectory. After vari-
ance scaling, PCA can be applied to the result-
ing matrix. Abnormal situation management
and statistical process control in the manner
described above is then possible. [85, 86]. For
on-linemonitoring, the empty cells of thematrix
row of live data that is projected are filled with
the last good values of the current batch.

The batch fingerprint method unfolds the
matrix such that each column contains the va-
lues of one variable dependent on the batch run
and the point in time in the run. Each row
corresponds to a point in time in a specific batch
(Fig. 17B). PCA cannot be applied to this matrix
because of the autocorrelation of the data but
PLS can be used to project the data onto quality
variables resulting in a batch fingerprint [91].
During a batch run, the confidence band around
the fingerprint should not be left. If this condi-
tion is violated, contribution plots can help show
which variable is the likely cause and needs to
be adjusted.

Both methods have problems with batches
that are of different lengths. There are different
methods to deal with this problem, an overview
and a combination of both unfolding methods
that also handles batches of different lengths can
be found in the literature [90, 91].

Abnormal situation detection and batch-pro-
cess control are powerful techniques for batch
operation especially if a significant amount of
historical data is available.

4.4. Optimal Operation of Single-
Batch Processes

4.4.1. Trajectory Optimization

In batch processes nonlinear dependencies need
to be considered more carefully than in contin-
uous processes. Therefore, for the optimization
of batch processes usually nonlinear physical
models or simplifications of such models are
employed. In contrast to the static optimization
of steady-state operating points in continuous
processes, optimization of batch processes al-
ways involves solving a dynamic constrained
optimization problem. For batch processes this
optimization is called trajectory optimization.
As batch processes are transient, the whole

trajectory must be optimized. Results of the
optimization are:

. A trajectory of the manipulated variables u(t)
for t0 to tend

. The corresponding state trajectories x(t) for t0
to tend

The definitions of the cost function and of the
constraints must represent the goal and the
limitations of the process adequately. The ob-
jective function should be economic in nature—
the minimization of cost, the maximization of
profit, the minimization of batch time, or a
combination thereof can be considered. Con-
straints include operational limitations and
product quality specifications as well as safety
related limits. Constraints can be dealt with as:

. Hard constraints that have to be fulfilled,
otherwise the optimization problem is not
solved (the solution is not feasible).

. Soft constraints the violation of which is
penalized in the objective function. Soft con-
straints do not have to be satisfied but should
be close to being fulfilled for the optimal
solution,which is assured by sufficiently large
penalty terms.

For the solution of the resulting rather diffi-
cult [92] optimization problems, sequential,
simultaneous or multiple-shooting techniques
can be used. In sequential optimization (or
single shooting [93, 94]), the inputs to the
process are parameterized by piecewise con-
stant or piecewise linear functions, where the
intervals can also be parameters of the optimi-
zation. The process model is solved by a simu-
lator, and the degrees of freedom are optimized
by an optimizer (often a sequential quadratic
programming (SQP) method [95]) in the outer
loop. This method is robust if the process is
stable, however, the satisfaction of path con-
straints (constraints along the trajectories of
state variables) may be difficult. If the optimi-
zation does not lead to a feasible solution, the
simulation of the last result is valid and can be
used to reformulate the problem.

In the simultaneous or full discretization
approach, the differential equations are solved
together with the optimization problem by
means of a parameterization of the trajectories
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of the inputs and of the states [96, 97]. The
resulting large nonlinear optimization problem
is solved by SQP or interior point methods [98,
99]. Themodel equations are only satisfiedwhen
the optimization has converged. The speed of
convergence depends crucially on the precision
of theHessian of the optimization problem. If no
feasible solution is obtained, the computed tra-
jectories do not satisfy the model equations.

Multiple shooting divides the optimization
horizon in several intervals and solves individ-
ual optimization problems on each interval by
the sequential approach. Continuity of the solu-
tions is imposed as additional constraints. By
exploitation of the structure of the optimization
problems, efficient and robust procedures re-
sult [100, 101]. Infeasibility or unsatisfactory
solutions can often be attributed to over- or
underconstraining the problem.

4.4.2. Implementation of the Optimized
Trajectories

The optimized trajectories can be implemented
in different fashions:

1. Feed-forward (open loop)The optimal tra-
jectories of the manipulated variables are
implemented and not modified if the states
deviate from their nominal trajectories.

2. Decentralized control
1. A set of measurable states are controlled

such that they follow the optimized
trajectories using SISO control with
appropriately chosen manipulated
variables.

2. If not all manipulated variables are used,
the remaining ones are implemented as
computed by the optimization.

3. Trajectory following linear or nonlinear
controllers
. The optimal trajectories of the manipulat-
ed variables become feed-forward ele-
ments uFFðtÞ

. The trajectories of a subset of the state
variables are controlled by modifications
of the inputs:

uðtÞ ¼ uFFðtÞþuFBðx�x�refÞ

Figure 18 illustrates the following of an
optimal trajectory. xopt and uopt are results of
the optimization. If the controller is a standard
linear controller, its settings can be adjusted
along the trajectory. The controller does not
provide the total required change in u(t) but
only the fraction required to handle the un-
known influences on the process.

In general, it is not clear which approach is
preferable, because this depends on the effect of
the deviations of the variables on the cost func-
tion and on the constraints. Constrained vari-
ables must always be controlled to maintain
feasibility.

4.4.3. On-line Optimization

If the process parameters change significantly
during a batch, on-line reoptimization might be
required [102]. In on-line reoptimization the
next input variables are computed by optimiza-
tion based upon measured process information.
The measurements are used in data reconcilia-
tion and state estimation to provide the current
states and estimates of the disturbances. The
optimizer uses this information to calculate the
optimal inputs for the remainder of the batch
run. This is called shrinking horizon control as

Figure 18. Control along a given trajectory with feed-forward elements
a) Controller; b) Process; c) Estimator/filter
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the horizon becomes shorter the further the
batch run progresses. If a model is available
that represents the process well and that can be
employed for optimization this approach guar-
antees an optimal operation of the batch process.
However, the computation times may be too
large to use on-line reoptimization as the only
controller of the process. In that case, it needs to
be combined with trajectory tracking control.
The optimization problem is solvedwith a lower
sampling frequency and reacts to longterm dis-
turbances that require the computation of a new
trajectory. In between these reoptimizations, the
last calculated optimal trajectory is implemen-
ted using a tracking controller that reacts to short
term disturbances.

4.4.4. Optimal Control AlongConstraints

A frequently occurring case of the optimization
of batch processes is the minimization of the
batch time in order to maximize the throughput
of the plant. In order to achieve a time-optimal
operation the process often has to be run at the
constraints of certain parameters, for example of
the heat generation which must not exceed the
heat removal capacity. Quite often, a time-opti-
mal operation can be achieved by tracking
constraints.

Considering the exothermic reaction A to B
as an example, the time-optimal operation poli-
cy for infinite heat removal capacity is to add all
of reactant A at the beginning of the batch, then
to heat the reactor up to reaction temperature as
fast as possible and then perform the reaction up
to the specified minimum conversion. In prac-
tice the resulting heat of reaction can usually not
be removed by the cooling system. As the heat
removal is the limiting factor, in the optimal
case A is fed such that the current heat of
reaction is equal to or slightly less than the
maximum heat removal. For optimal productiv-
ity the process is thus driven along this path
constraint. A detailed discussion of this
approach is provided by [103–105].

When batch processes are driven along the
heat removal constraint, safety margins become
a very important issue because a cooling failure
can lead to a thermal runaway. The maximum
feed rate should be constrained such that in the
case of a cooling failure the reaction of the

unconverted raw materials in the reactor heats
the reactor contents only up to a temperature
below the thermal runaway or below triggering
relief systems.

4.4.5. Golden Batch Approach

The golden batch approach is an established
practical method. A golden batch is a batch with
very good results in terms of the specific objec-
tives, such as product quality, batch time, and
energy consumption. This batch is then used as a
template for further batches.

A data historian or a database provides the
trajectories of the relevant process parameters
of the golden batch. These trajectories define the
optimal trajectories for following batches. Their
values and the deviations of the current values
from the golden trajectories are displayed dur-
ing other batch runs. The operators will try to
drive the current batch close to the golden batch.
Using trajectory tracking by feedback control,
this process can be automated. If the relevant
process parameters aremeasured, displayed and
controlled, near optimal batch operation is
guaranteed.

In practice, not all relevant process para-
meters are measured during the batch. This is
why the golden batch method should be com-
bined with estimation techniques, for example,
a PLS that estimates important quality para-
meters during the batch run, because much
historical data is usually available and relation-
ships between measured and quality variables
are often hidden in the data.

Furthermore, it has to be possible to actually
follow the golden batch trajectories of the dif-
ferent variables. In large batch or semibatch
tanks the number of measured variables is often
large, for example, several temperatures and
pressures, flow rates as well as the stirrer torque,
while the number of manipulated variables may
be small, possibly only the coolant temperature,
the stirrer speed, and the feed flow rates.

In such situations the methods of statistical
process control described in the Section 4.3.5
can be applied. As the models are trained using
batches that have been classified as good
batches, the methods inherently contain the
golden batch method. Classical trajectory track-
ing controllers are typically not applied in this
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case. The operator takes corrective action
assisted by the contribution plots.

4.5. Batch-to-Batch Control

4.5.1. General

The motivation of batch-to-batch control is the
lack of measurements of product quality indi-
cators during the batch runs. In most industrial
batch processes quality variables are measured
only at the end of the batch. Batch-to-batch
control is a discrete-time control strategy which
incorporates a feedback loop using themeasure-
ments at the end of the batch to change the
settings for the next batch [106]. By analyzing
the last run, the batch-to-batch controller ma-
nipulates the recipe of the next run to achieve a
better operation. Batch-to-batch control is sen-
sible for processes in which the same product is
produced regularly, that are difficult to handle,
and that have a tendency to drift from the
optimal operation. If, for example, fouling is
a problem, the controllerwill react by increasing
the stirrer speed or the cooling. If a fouling
problem is known and a cleaning schedule for
the reactor exists, feed-forward control ele-
ments should be employed so that it does not
take several batch runs for the batch-to-batch
controller to realize that the fouling has
disappeared.

4.5.2. Iterative Batch-to-Batch
Optimization

Model-based optimization and batch-to-batch
control can be combined into an efficient and
robust scheme for processes where the cost
function and the constraints can be measured
at the end of the batch. The key idea is to use a

gradient-based optimization to compute opti-
mal operating parameters based upon a process
model, and to compensate for the inevitable
mismatch between the model and the behavior
of the real plant by correction terms. These
correction terms are empirical gradients of the
cost function and of the constraints that are
obtained from the measurement information
about past batches. This scheme was first pro-
posed in [107] for the unconstrained case and
later extended to the constrained case and ap-
plied to batch chromatography in [108]. In [109]
it was demonstrated for a case study where a
batch reactor was controlled using a simplified
model of the chemical reaction that this partly
data-based and partly model-based iterative
scheme performed better than a data-based ad-
aptation of the parameters of the (structurally
incorrect) model. The drawback of the method
is that the computation of the gradients of the
cost function and of the constraints with respect
to the operating parameters requires several
batch runs until the true optimum is reached
and a batch run at a suboptimal operating point
may be required to obtain sufficient information
on the gradients. Several schemes for how to
choose the set-points during the course of the
optimization are discussed in [108]. On the
other hand, convergence is much faster than for
a purely data-driven batch-to-batch optimiza-
tion and the resulting operating point is feasible
and optimal which is not be the case if the
optimization relies only on the model.

4.6. Summary

Batch processes are often used if process
robustness to insufficient knowledge is re-
quired. A batch process can be adapted on-line,
the batch time can be increased or decreased
or recipes can be modified slightly. The

Table 3. Summary of the methods for practical optimal control of single batches

Method Effort Result quality

Rigorous dynamic (re)optimization high very good if model is precise

Control along limiting constraints medium very good if optimum is at constraints and

disturbances are not too large

Golden batch approach low (old recipe) high (new recipe) good if golden batch can be tracked

Feedforward/feedback approach low (old recipe) medium (new recipe) good as long as disturbances are not too large
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insufficient knowledge on the other hand im-
plies that good models capable of predicting the
process behavior, as they are often required for
advanced control and optimization approaches,
are either not available or very expensive to
develop.

Control of batch processes is dominated by
logic control. Commonly agreed standards
cover the structuring of batch plants, recipe-
based production, and logic control. These
standards provide the necessary means to real-
ize and to use software for recipe-driven batch
operation. However, the combination of logic
control and continuous behavior during a batch
results in hybrid system dynamics. The com-
bined optimal design of logic and continuous
controllers including optimal trajectory plan-
ning and its tracking is a challenging problem
[110].

Batch processes are always dynamic and
exhibit nonlinear dynamic behavior. This
implies that classical linear control theory is
often only applicable with significant enhance-
ments such as feed-forward of the desired tra-
jectories of the manipulated variables and gain
scheduling control. Batch run optimization re-
quires optimal trajectory planning which gives
rise to challenging dynamic process control and
process optimization problems.

While the standards on batch control are now
generally agreed and have resulted in significant
standardization of batch logic control systems
that are sold by many control system vendors,
the areas of optimal logic control design, state
estimation, and abnormal situation detection as
well as optimal batch control are open research
areas. Some of these aspects such as optimal
trajectory design are well understood and ready
for implementation in industrially validated
software products, others such as an optimiza-
tion that includes the switching (logic) control
as well as the continuous dynamics are not yet
mature.

A central aspect remains the development of
robust dynamic models with good prediction
capabilities to employ the advanced methods
described above. New methods that achieve
good results without very precise models,
e.g., as proposed in [108] have only recently
been developed and are an interesting alterna-
tive to classical model-based methods in batch-
process optimization.

5. Model Predictive Control:
Multiparametric Programming

5.1. Introduction

Multiparametric programming has emerged in
the last decade as an important optimization-
based tool for systematically analyzing the ef-
fect of uncertainty and variability in mathemat-
ical programming problems. Its importance has
been widely recognized and many significant
advances have been established both on the
theory and application of multiparametric pro-
gramming in engineering problems such as
control and optimization. The adoption of mul-
tiparametric programming in model-based con-
trol and specifically model predictive control
(MPC) has created a new field of research in
control theory and applications, known asmulti-
parametric model-based predictive control or
explicit control.

Multiparametric programming is a technique
that, in an optimization framework with an
objective function to minimize, a set of con-
straints to satisfy and a number of bounded
parameters affecting the solution, obtains com-
putationally inexpensively the exactmapping of
the optimal solution profile in the space of the
parameters. As it is illustrated in Figure 19, the
optimal solution mapping (or explicit solution)
consists of:

. The objective function and the optimization
variables as functions of the parameters

. The space of parameters (known as critical
regions) where these functions are valid

The optimization can then be replaced by its
optimal solution mapping and the optimal solu-
tion for a given value of the parameters can be
computed efficiently by performing simple
function evaluations, without the need to solve
the optimization. The advantage to replace op-
timization by simple and efficient computations
has given multiparametric programming wide
spread recognition and has triggered significant
advances in its theory and applications.

Multiparametric–linear programming (mp–
LP) algorithms, based on the Simplex algorithm
were first investigated by [111–113], when the
parameters are present both in the coefficients of
the objective function and the right-hand side of
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Figure 19. Multiparametric programming
A) Optimal look-up function; B) Critical regions
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the constraints while the same problem was
treated in [114] by applying sensitivity analysis.
An mp–LP framework for flexibility analysis in
process design problems under uncertainty is
presented in [115]. The general framework of
multiparametric MPC (mp–MPC), the theory,
and related applications were presented for the
first time in [116]. Multiparametric–quadratic
programming (mp–QP) algorithms by explicitly
were investigated by [117, 118] solving the
KKT optimality conditions. Algorithms for
multiparametric–mixed-integer linear program-
ming (mp–MILP) problems with scalar para-
meters were developed in [119, 120], while the
nonscalar mp–MILP problems were investigat-
ed in [121, 122]. An algorithm for multipara-
metric–mixed-integer quadratic programming
(mp–MIQP) problems was introduced for the
first time by [117]. Methods for multipara-
metric–mixed-integer nonlinear programming
(mp–MINLP) problems with scalar parameters
were developed by [120, 123], while the more
general nonscalar casewas first treated by [124].
Finally, the first algorithms for multiparametric
global optimization and multiparametric dy-
namic optimization where introduced in [125,
126], respectively. The advances in multipara-
metric programming theory and its applications
in advancedmodel-based control are the subject
of a two volume textbook that has appeared
recently in the literature [127, 128].

Multiparametric programming has found
many applications especially in the area of
process engineering such as process design,
optimization, and control. However, the most
significant one has been established in the area
of model-based control and specifically MPC.

Traditionally, MPC obtains the control actions
on a process by solving repetitively an on-line
optimization problem based on the prediction of
the future system behavior. Despite MPC’s
advantage to handle process constraints and
multivariable processes, its applications has
been rather limited due to the demanding
computational requirements of on-line optimi-
zation. mp–MPC, on the other hand, is an
advanced control method that uses multipara-
metric programming methods to solve the on-
line optimization problem of MPC and obtain
the exact mapping of the optimal control vari-
ables as functions of the state variables. The
main advantage of this approach is that it re-
places the on-line optimization of MPC with
simple function evaluations that require a smal-
ler on-line computational effort in comparison
with on-line optimization. This advantage has
made it possible for MPC to be implemented on
simple computational hardware such as micro-
chips, paving the way for many advanced con-
trol applications in chemical, energy, automo-
tive, aeronautics, and biomedical systems. The
concept of replacing the on-line optimization
via the exact mapping of its optimal solutions,
has become known as ‘‘on-line optimization via
off-line optimization’’ while the ability of mp–
MPC to be implemented on the simplest possi-
ble hardware has become known as the ‘‘MPC-
on-a-Chip’’ technology. These concepts as well
as the framework for the design and implemen-
tation of explicit MPC are illustrated in
Figure 20.

The explicit solution of the discrete-time
constrained linear quadratic control with multi-
parametric programming was first studied

Figure 20. mp–MPC and the MPC-on-a-Chip technology
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in [118] and paved the way for the development
of mp–MPC. The solution for the continuous-
time linear quadratic control problem was
provided by [129]. In the area of robust mp–
MPC [130] provided two methods for deriving
the explicit solution for linear quadratic control
of system with disturbances while in [131] a
min–max robust mp–MPC algorithmwas devel-
oped for systems with parametric model uncer-
tainties. Two algorithms for multiparametric
dynamic programming were presented in [132,
133], while multiparametric nonlinear MPC
(NMPC) was first investigated in [134–136].

The developments in multiparametric pro-
gramming and mp–MPC theory were soon fol-
lowed by equally important developments in
applications. Industrial applications of mp–
MPC include the control of an air separation
process [137] and active train valve control for
the Lotus experimental engine while applica-
tions in biomedical systems include control of
insulin delivery for type 1 diabetes. These are
the first twomilestone applications of mp–MPC
in industrial and automotive applications and
have served as platforms for proving the concept
of MPC-on-a-Chip. Ongoing applications on
multiparametric programming and MPC such
as the control of proton exchange membrane
(PEM) fuel cells, hybrid systems for hydrogen
generation, hydrogen storage in metal–hydride
bed, navigation and control of multiple un-
manned air vehicles (MUAV) highlight the im-
portance of multiparametric programming and
MPC in engineering applications. These appli-
cations highlight the potential of mp–MPC for
implementation in various processes and sys-
tems and its possible value for commercializa-
tion. Hence, two patents [138, 139] have
emerged recently on the MPC-on-a-Chip
technology.

The objectives of this article are to overview
recent advances in multiparametric program-
ming and mp–MPC theory and applications,
and provide future directions to the opportu-
nities and challenges for research in multipara-
metric programming and MPC.

5.2. Multiparametric Programming
Theory

Despite the major advances in the theory of
multiparametric programming, still many unre-

solved issues exist for many classes of multi-
parametric programming problems. It is evident
from the relevant literature that amajor research
effort has been made so far for the study and
development of mp–LP andmp–QP algorithms,
with the rest of the problems receiving less
attention. This is due to the many applications
of multiparametric programming, such as linear
control applications, where the main focus is on
linear problems, and to the complexity and
difficulty to solve explicitly mp–MINL and/or
dynamic optimization problems. However, the
ongoing developments in:

. Process optimization and control

. Nonlinear, continuous-time and/or hybrid
systems

. Hierarchical decision making and control

have created new challenges for multipara-
metric programming. Recent advances in:

. mp–NLP

. Bilevel/multilevel, and hierarchical pro-
gramming

. Constrained dynamic programming

. Global optimization of mp–MILP

are overviewed here and the perspective re-
search opportunities in the unexplored areas of
mp–MPC are exposed.

5.2.1. Multiparametric Nonlinear
Programming

Developments in the methods of mp–NLP have
not followed the rapid progress in the develop-
ments of mp–LP and mp–MILP methods. How-
ever, there are some significant advances inmp–
NLP algorithms. Previouswork inmp–NLPwas
focused on the development of outer mp–LP
approximations within a prescribed approxima-
tion error of the underlying mp–NLP prob-
lem [140]. A number of novel results have also
been established recently. In [141] a geometric,
vertex-based algorithm is introduced for obtain-
ing a piecewise affine approximation of the
explicit solution of an mp–NLP problem. On-
going research in mp–NLPmethods is currently
focusing on the development of quadratic
approximations for mp–NLP problems.
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5.2.2. Bilevel/Multilevel, Hierarchical
Programming

Bilevel programming falls within the class of
hierarchical optimization problems, where one
optimization problem (outer- or upper-level
problem) is constrained by another optimization
problem (inner- or lower-level). Bilevel pro-
gramming problems have found applications in
game theory and hierarchical decision making,
while there is a potential for applications in
hierarchical control. In recent develop-
ments [142], multiparametric programming has
been used as a tool for solving bilevel program-
ming problems. Depending on the type of the
outer and inner problems, multiparametric pro-
gramming has been applied for the following
bilevel programming problems:

. A QP formulation for the outer and inner
problems

. A LP formulation for both the outer and inner
problems

. A outer QP problem and an inner LP problem

. An outer LP problem and inner QP problem

. For mixed-integer bilevel problems

In [142] a global optimization framework
was established for bilevel programming that
(i) recasts and solves the inner optimization
problem as multiparametric programming,
where the parameters are the optimization vari-
ables of the outer optimization and (ii) trans-
forms the bilevel problem into a single level
convex optimization problem. More recent-
ly, [143] applied a similar framework for
mixed-integer bilevel programming where the
inner problem is first reformulated to its vertex
polyhedral convex hull representation and then
to a multiparametric programming problem
using convex underestimators problem. The
bilevel problem is then transformed to simple
convex optimization problem.

5.2.3. Constrained Dynamic
Programming

Dynamic programming (DP) has been a popular
method for the optimization of multistage deci-
sion processes, with many applications found in
decision making, operation research, and

optimal control. Its main advantage is the ability
to break a multistage problem into solving a
sequence of smaller size stage-wise optimiza-
tion problems and obtain the optimal decisions
as policies (functions) of the state of the under-
lying system. Although DP is a well-established
methodology, there are still issues with the
solution of multistage optimization problems
especially in the presence of constraints and
parameter variations. This case had not been
fully treated previously in the relevant research.
Multiparametric programming has been used to
solve the constrained DP problem [132] of
linear quadratic multistage problems. Each of
the stagewise optimization problem is solved as
a multiparametric quadratic program where on-
ly the optimization variables, parameters, and
constraints at the current stage are considered.
However, with this approach the convexity of
the original problem is lost since the objective
function is piecewise quadratic [132, 133].
Global optimization methods have to be em-
ployed then to solve the stagewise optimization,
which usually lead to overlapping critical re-
gions. A method is shown in [133] as a convex
multiparametric quadratic problem where the
decisions of each stage are derived as explicit
functions of the states of the stage, where no
critical region overlapping occur.

5.2.4. Global Optimization of Multi-
parametric Mixed-Integer Linear
Programming

The general mp–MILP problem (Fig. 21) focus-
es on MILP problem with parameters in the
coefficients of the objective function and the
right-hand side of the linear inequalities. Previ-
ous methods have been focused on the simple
mp–MILP problemwhere no parameters appear
in the coefficients of the objective function
while recently in [144] the general mp–MILP
problem was treated. The general algorithm for
solving mp–NILP problems is based on a pro-
cedure that iterates between the solutions of a
master optimization problem and a slave opti-
mization problem (Fig. 21). Themaster problem
is formed as aMINLPwhere theminimization is
over all variables including the parameters. The
slave problem is formed as a multiparametric
nonlinear program, by substituting the integer
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solution of the master problem in the mp–MILP
problem, where the objective function contains
bilinear terms of the parameters and the contin-
uous optimization variables. The master prob-
lem can be solved to global optimality since a
solution of the integer variables is required. The
challenge here is to avoid the need for global
optimization for the slave problem thus reduc-
ing the computational effort of the master–slave
iterating process. In [144] it is shown that global
optimization of the slave mp–NLP problem can
be avoided and the slave problem can be solved
as a simple mp–LP problem.

5.3. Explicit/Multiparametric MPC
Theory

Past and current research has mainly focused on
the theoretical and algorithmic developments in
the areas of linear explicit MPC and robust
explicit MPC while some important results in
the theory of hybrid, continuous-time and non-
linear explicit MPC have also been reported in
the literature. The recent developments in mp–/
explicit MPC theory are focused mainly in the
following areas:

. Explicit MPC and model order reduction

. Explicit nonlinear MPC (NMPC)

. Robust explicit MPC

These developments are overviewed here
and the future research directions in the explicit
MPC theory will be discussed next.

5.3.1. Explicit Control and Model Order
Reduction

The purpose of model order reduction methods
is to provide approximating reduced-order

models (with a reduced number of state vari-
ables) for large-scale processes. In the case of
mp–MPC, the reasons for applying model order
reduction methods are:

. Insufficient available memory for solving the
mp–MPC problem off–line

. The desire to reduce the time in which the
explicit solution of mp–MPC is obtained

. The need to reduce the size of the explicit
solution (smaller number of critical regions
and smaller number of parameters) in order to
speed-up on-line calculations

In these cases, a reduced-order model of the
real large-scale process can be directly used for
the design of reduced-order mp–MPC [145].
However, since the reduced-order models are
only approximations of the real process, the
optimality and feasibility of the reduced mp–
MPC is not guaranteed [141]. A systematic
method that combines balanced truncationmod-
el reduction and mp–MPC design was devel-
oped by [141], which obtains the minimum
order of the reduced-order model for which the
resulting reduced-order mp-MPC controller en-
sures the optimality and feasibility for the large-
scale system. This is the first reported work in
model order reduction and mp–MPC to deal
with the issue of the optimality and feasibility of
reduced-order multiparametric controllers. It is
also the first work to introduce the concept of
combined model reduction and mp–MPC tech-
niques in order to resolve these issues.

5.3.2. Robust Explicit MPC

There is an undisputed need for robust explicit
MPC methods for the design of explicit con-
trollers for dynamic systems with bounded dis-
turbances and model uncertainties. Explicit

Figure 21. The general mp-MILP problem and the master-slave formulation
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MPC controllers designed with the use of nom-
inal dynamic models cannot guarantee feasibil-
ity, in terms of constraint satisfaction, and sys-
tem stability when disturbances and/or model
uncertainties are present. The challenge here is
to develop algorithms for the design of robust
explicit MPC controllers, which guarantee con-
straint feasibility and robust stability for any
values of the uncertainty. The recent research of
robust explicit MPC has been focused on the
design of robust explicit MPC controllers for
linear dynamic systems with additive distur-
bances in the linear state-space models and/or
parametric model uncertainties in the system
matrices. The case of robust explicit MPC of
linear systems with additive disturbances was
first examined in [130]. The design of robust
explicit MPC for linear systems with model
parametric uncertainties and linear objective
functions was also investigated in [131]. Robust
mp–QP methods were investigated by [146],
based on the previous work on robust optimiza-
tion [147, 148], for solving the robust explicit
MPC of linear systems with parametric model
uncertaintieswith a quadratic objective function
(robust linear quadratic control). Recently, a
novel framework for robust explicit MPC of
uncertain systems was developed [133, 149,
150] by using combined constrained dynamic
programming and robust optimization methods.
The proposed approach is based on the follow-
ing three–step algorithm:

. The underlying optimizationMPC problem is
recast as a multistage optimization problem

. The multi–stage optimization problem is re-
duced to smaller single-stage optimization
problems by applying constrained dynamic
programming, where only the controls, states,
and constraints at the current stage are
considered

. The single-stage problem is solved with ro-
bust multiparametric optimizationmethods to
derive the control variables as an explicit
function of the states

5.4. MPC-on-a-Chip–Applications

The significant advances in multiparametric
programming and mp–MPC were followed by
a number of important applications. Many of
these applications involve the design and

implementation of multiparametric controllers
for real, complex processes where the available
control hardware and software is limited for
advanced control applications. The main areas
of application of multiparametric programming
and mp–MPC include (i) process engineering,
(ii) heat networks, (iii) automotive, (iv) aero-
nautics, (v) biology systems, (vi) scheduling,
(vii) waste management, (viii) power electron-
ics, (ix) gas–liquid separation, and (x) oil and
gas processes.

Threemilestone applications that showed the
potential of the MPC-on-a-Chip technology are
the following ones:

. Process systems: small air separation plants
for the production of nitrogen [137]

. Automotive systems: active valve train
control [151]

. Biomedical systems: insulin delivery for type
1 diabetes [152]

The first application falls within the area of
medium-scale processes with medium dynam-
ics while the last two applications fall within the
area of small-scale, portable processes with fast
dynamics. In all these three applications the
main issues for the control design and imple-
mentation was the available control hardware,
which was mainly based on the use of micro-
chips, while the last two applications also faced
issues with fast dynamics and small sampling
times. mp–MPC was successfully applied in all
three cases while important performance im-
provements were also reported [137, 151, 152].
Figures 22 and 23 demonstrate the implemen-
tation of explicit MPC for the small air separa-
tion plant and the insulin delivery applications.
These applications were used as proofs of con-
cept for demonstrating the simplicity and effec-
tiveness of explicit MPC.

There is currently a number of ongoing
applications of mp–MPC which are presented
below with the details of their related projects:

. Hybrid pressure swing adsorption/membrane
hydrogen separation

. Hydrogen storage based on metal-hydride
beds

. Fuel cells

. Unmanned air vehicles (UAV) and biomedi-
cal systems
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The objectives of these applications are
to (i) apply and evaluate the results of the recent
developments in the theory of multiparametric
programming and mp–MPC, (ii) investigate
new methods for mp–MPC to address

application-specific issues (e.g., new state and
disturbances estimation techniques are neces-
sary for the control of UAV) and (iii) to evaluate
the future potential ofmp–MPC for awide range
of systems.

Figure 22. Explicit MPC for small air separation plants [137]

Figure 23. Explicit MPC for insulin delivery for type 1 diabetes [152]
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5.5. A Framework for
Multiparametric Programming and
Explicit MPC

The recent advances in multiparametric pro-
gramming include the introduction of a unified
framework for multiparametric programming
and explicit MPC controllers. Figure 24 shows
an illustration of the main idea of this frame-
work and the steps required for the design of
explicit MPC. A high-fidelity dynamic model is
used to provide a detailed description of the
process.A reduced-ordermodel is then obtained
from the high-fidelity model by applying model
reduction or identification methods and is used
to form theMPC problem. TheMPC problem is
solved by applying multiparametric program-
ming to obtain the explicit controller. In the last
step of the algorithm the explicit controller is
applied on the high-fidelity model and is tested
to identify possible deviations from the desired
behavior or possible infeasibilities (since the
explicit controller is derived from an approxi-
mating model and not the actual high-fidelity
model). If necessary, the procedure is repeated
until the desired behavior is achieved for the
explicit controller. Each of these tasks can be
performed off-line and on-line computations
are not required either for the design or the
validation of the controller.When the validation

is completed, the controller is implemented on
the real system. The high-fidelity dynamicmod-
el is important in this framework since it is used
to represent the real process. The explicit con-
troller validation is performed on this model to
ensure accuracy and feasibility. Hence, the ad-
vantage of the proposed framework is that it
allows for the design of ‘‘tailor–made’’ explicit
controllers, which can be tested off-line based
on high-fidelity model.

5.6. Concluding Remarks and Future
Outlook

The main advantage of multiparametric
programming and mp–MPC is their ability to
replace the on-line optimization in an MPC
framework, with computationally inexpensive
function evaluations, that can be applied on
simple computational hardware. This paves the
way for many advanced control applications not
only in the area of large- and medium-scale
processes, where advanced control and MPC
has been traditionally applied, but also for
small-scale systems such as portable devices
and equipment, where advanced control meth-
ods had not yet found applications due to the
insufficient computational power required for
their implementation.

Figure 24. A framework for multiparametric programming and explicit MPC
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Future research opportunities in multipara-
metric programming include: (i) multipara-
metric dynamic optimization (mp-DO) of con-
tinuous-time multistage dynamic systems (also
involving 0-1 variables, i.e., mp-MIDO pro-
blems), (ii) global optimization/multipara-
metric programming of nonlinear programs–
current research has mostly focused on linear
and mixed-integer linear programs, and (iii)
revisiting the fundamentals of optimization the-
ory (or investigate new ones) since many issues
in multiparametric programming are common
issues of standard optimization as well. Future
research opportunities in explicit/mp–MPC in-
clude: (i) robust explicit/mp–MPC of hybrid
and continuous-time systems which is an area
with limited attention in the relevant literature,
(ii) explicit/mp–NMPC (most of the current
work address the linear system case only) and
(iii)model reduction, identification and explicit/
multi-parametric control. Finally, future oppor-
tunities for the application of explicit/mp–MPC
include medium-scale processes such as small
air separation plants, PSA units and fuel cell
systems and small-scale systems such as porta-
ble devices and equipment, for which the avail-
able control hardware is mainly based on mi-
croprocessor and/or microchip technology and
its available computational power, cannot sup-
port on-line optimization computations. mp–
MPC and the MPC-on-a-Chip is particularly
suitable for this type of systems, since the
simple function evaluations involved in the
implementation of mp–MPC, allow for its im-
plementation on the simplest control hardware
such as microprocessors and microchips.

6. On-Line Applications of Dynamic
Process Simulators

6.1. Introduction and Historical
Background

6.1.1. Modeling Dynamic Simulation

A dynamic simulator is a mathematical descrip-
tion of the time-varying physical behavior of a
production facility. In many cases, this produc-
tion facility is a chemical production facility,
since on-line application of dynamic simulation
is quite far developed in the chemical industry.

However, in principle it can also be a food or, a
pharmaceutical production facility. Dynamic
models do not simply represent the phase, flow,
and reaction behavior of the material in a pro-
cess. They need also to model the behavior of
the processing equipment. Considering, for ex-
ample, a large processing vesselmade of steel or
a valve the following questions may arise: How
long does it take to warm up this vessel from a
cold start? How quickly will the valve close?
Will it close so quickly that a pressure surge will
rupture a hose and result in a leak? Do one need
to install a device to slow down the valve? In
addition, the control and safety systems in the
facility must be part of the model. The interac-
tion between the process and its control, se-
quences, and safety logic is often the most
important (and interesting) part of the dynamic
behavior of the facility.

A dynamic process model that takes account
of process, equipment, and control is therefore a
detailed and complex artefact. Fortunately, the
unit operations concept can be applied to dy-
namic models so that a model of a large facility
can be built up as a network of models of
individual processing operations, equipment,
and control algorithms.

6.1.2. Historical Perspective: From
Design and Training to Full Lifecycle
Operations

Today’s tools and methods for dynamic simu-
lation build on academic work from the late
1970s and early 1980s [153, 154] that resulted in
commercial tools that became available in the
late 1980s and early 1990s. Tools for operator
training used a modular approach. Some exam-
ples were OTISS, G-PURS, Trainer, ProSim,
and CADAS, whereas equation oriented tools
(e.g., SpeedUp [154], gProms and Mass-
bal [155]) were primarily used for engineering.
A second generation of simulation tools, that
took advantage of the personal computer, be-
came available from the mid 1990s. These
second-generation products have been devel-
oped and remain the dominant commercial
tools today. A nonexhaustive list of products
includes K-Spice (Kongsberg Group), INDISS
(RSI-Simcon), Aspen Dynamic Modeler
(AspenTech), gProms (Process Systems
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Enterprise), Unisim (Honeywell), and Hysys
(AspenTech).

The general process simulators listed above
are complemented by specialized dynamic
simulators that model some specific part of
the production chain. Thus, specializedmodels
are used for refinery reactors, olefin crackers,
and other–often proprietary–reactions. In the
upstream petroleum industry, multiphase
pipeline simulators, such as OLGA [156],
PIPEPHASE [157] and LedaFlow [158]
simulate the dynamic behavior of oil, gas, and
water mixtures in long pipelines, oil well bores
and complicated subsea fluid connection
networks.

Generic dynamic simulation tools and lan-
guages, such asMatlab/Simulink andModelica,
have to date had limited impact for dynamic
process simulation. This is primarily due to their
limited ability to access thermodynamic and
physical property data. This situation may
change with the adoption of the CAPE-OPEN
interface standards for thermodynamics and
physical properties.

Initial applications used detailed, slow,
equation-based calculations (using, for exam-
ple, SpeedUp or gProms) to solve design pro-
blems, and simplified modular simulations for
operator training. As the price of computers
decreased and computing power increased the
fidelity of simulators used for training was
improved to a degree where they were accurate
enough to be used for design calculations. At
the same time, the rise of client-server com-
puting allowed interactive, graphical configu-
ration of the simulation models. The first gen-
eration of simulators used a batch work pro-
cess: first configure a model, then do the simu-
lation calculations, and finally visualize the
results. The best modern tools provide a single
user interface for model configuration, simula-
tion, and display of results.

By the mid-1990s, as reliable commercial
tools became available for process simulation,
work began on seeing how these models could
be applied to actual process operations. In-
creased use of process historical databases and
open-architecture control systems meant that
dynamic process data–trends and events–could
be collected, stored, and analyzed. This raised
questions such as: How good are the simulators
we have built? Do they actually predict the

behavior that is observed in the facility? Can
our model be tuned to match the observed data?
At the same time, the adoption of the object
linking and embedding (OLE) for process con-
trol (OPC) standard meant that a simulator-
based application could connect to a control
system, simply and cheaply, using a standard
interface, rather than the expensive, proprietary
protocols that dominated in the 1980s and
1990s. This provided away of using a simulator,
in real-time, with real process data to perform
calculations that would help a process operator.
Initial applications beganwith relatively limited
models, such as a singlemultiphase pipeline and
its reception facilities or a batch polymerization
reactor. As confidence grew and computing
speed increased, the scope of the models and
systems has grown.

6.2. Architecture for On-Line
Simulation

A typical architecture for an on-line simulator is
shown in Figure 25. Raw process measurements
and data for synchronization are read from the

Figure 25. Architecture for on-line simulation applications
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facility’s control system or process historian.
These measurements are then validated–using
simple checks and rules–before being used as
input to the dynamic simulator. The dynamic
data uses selected measurements as fixed
boundary values and the synchronization data
are used to ensure that the equipment in the
simulation has the same settings and status as
the equipment in the actual plant. Other mea-
surements can then be used to tune the model
and to detect abnormal conditions, such as
leakage or equipment fouling. The choice of
boundary conditions, synchronization vari-
ables, and tuning measurements depends on the
application. Each application described in
Sections 6.4, 6.5, 6.6 gives examples of these
different types of variables.

As noted above OPC is important as an
enabler for on-line simulation. The OPC stan-
dards for data acquisition (DA) and historical
data acquisition (HDA) mean that systems can
be developed that can read data from essentially
all modern control systems and process histor-
ians using a common data protocol. A new
version, OPC unified architecture (UA), has just
been released and is likely to rapidly replace the
older standards [159].

The on-line simulator reads data from the
rawdata source usingOPC. The communication
link then applies data validation and replace-
ment to ensure that missing or erroneous data is
not used in calculations. This is discussed in
more detail in Section 6.3.2 below. The pro-
cessed data is made available to the on-line
simulator via a data broker component.

The on-line model runs in synchronization
with the process. It provides data for display to a
visualization interface and can also raise alarms
and events. The model regularly saves snap-
shots of its state. These snapshots can be used to
start another copy of the dynamic simulator–a
predictive or look-ahead simulator. The predic-
tive simulator is used to evaluate the future
effect of operator actions. Its purpose is to run
in as short a time as possible so that an operator
can be warned about undesirable effects of a
planned action. The predictive model can dis-
play its results in the visualization system and
can also generate alarms and events. Predictive
simulations can be run automatically–at a fixed
time interval or when an operation is done–or on
demand.

6.3. Challenges in the Use of Dynamic
Process Models for On-Line and
Real-Time Applications

On-line simulation is technically challenging. It
involves trying to relate an imperfect process
simulation to a real industrial process with
inaccurate measurements, communication
glitches, corporate bureaucracy, limited bud-
gets, and wear and tear on equipment. The
challenges can be sorted into the following
categories:

. Data security and corporate information
policy

. Data communications and quality

. Synchronization with operations

. Model quality–stability and accuracy

. Thermodynamics

6.3.1. Data Security and Corporate
Information Policy

On-line simulation applications interact with
safety-critical systems and handle confidential
information related to production and efficien-
cy. For these reasons, an on-line simulator is
subject to rigorous data security require-
ments [160]. Modern production facilities use
a three-tier network architecture to enforce se-
curity (Fig. 26).

An on-line simulator provides information
for operators and uses raw data from the process
control system. The on-line simulator is usually
not allowed to write data to the control system.

Figure 26. The three-tier security architecture
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However, it is common to place the on-line
system in the process network, or demilitarized
zone. This enables the system to communicate
quickly and efficiently with the control system.
However, this approach makes it more difficult
to use data outside the production facility and to
provide remote support.

The alternative approach is to place the
simulation application in the corporate network,
with a connection to the control system via a
process historian. This approach makes corpo-
rate access to data and remote support easier.
However, the process historian can introduce
delays and unwanted filtering into the data used
by the on-line simulator. Furthermore, process
historians are often configured not to store all
the types of data needed by an on-line simulator.

6.3.2. Data Communications and Quality

A successful on-line simulator requires good
process data and must implement mechanisms
so that it is robust–keeps operating as well as it
can–when data communication is lost or there
are problems with measurement sensors, trans-
mitters, or signal converters. Mechanisms that
can be used are:

. Simple validation and replacement of single
signals. The signal is checked against its
maximum value, minimum value, maximum
allowable rate of change, and status reported
from the data source. Bad values can be
replaced by the last good value or a specified
override value. Lack of change in a measure-
ment should also be detected as a problem.
This can indicate a communication failure, a
too-wide range for reporting on change or a
poor configuration of data compression in a
process historian.

. Logical checks on relationships between
process variables. Process measurements
can be checked against each other to ensure
that they are consistent. For example, during
normal operation, the pressure downstream a
pump must be higher than the suction
pressure.

. Data reconciliation calculations, where mass,
momentum and energy balances are used to
correct a set of process measurements so that
they are consistent with the balances.

6.3.3. Synchronization

An on-line simulator can only be synchronized
with equipment units that report their status to a
control system or process historian. The pro-
blems this causes can be illustrated by the very
simple example shown in Figure 27.

The control system can supply values for the
flow measurement, the flow controller set point
and status, the flow controller output, and the
isolation valve position (open or closed). How-
ever, the manual bypass valve and drain valve
are not usually connected to a control system.
They are operated by a field operator. A mis-
match will occur if one of these valves is open in
the plant while it is closed in the model. If the
drain valve is opened the simulated flow down-
stream the isolation valve will be greater than
the actual value. If the bypass is opened, the flow
controller output will be different in the simu-
lation and the process.

An on-line simulator must handle field oper-
ator actions elegantly. In an ideal world, one
could hope that field operators, as part of the
standard procedure, opened the corresponding
manual valve in the on-line model as they
opened the real valve in the process. This is
unlikely in practice. However, as unmanned
facilities become more common, this problem
may become less of an issue. All valves will be
remotely manipulated.

However, the best an on-line system can do
in the presence of unimplemented field operator
actions is to report discrepancies between ob-
served and measured conditions. In the case
shown above, a discrepancy between measured
and observed flows or pressures downstream of
the isolation valve could provide a valuable

Figure 27. A simple example of model synchronization
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indication that a drain valve that should not be
open is open.

6.3.4. Model Quality

‘‘All models are wrong, but some models are
useful’’ is a quote from the famous statistician
GEORGE BOX. Dynamic process simulators have
been proved to be useful. The fundamental
physics and thermodynamics embedded in the
models also mean that they are often correct
enough for process design and operations. How-
ever, themodel is alwayswrong, andwill tend to
drift away from the process unless it is tuned.
Fortunately, because the model incorporates
fundamental physics, we know the parameters
that account for uncertainty in the model. These
are the empirical design constants for the equip-
ment: the friction factor for a pipe, the heat-
transfer coefficient for a heat exchanger, and the
separation efficiency of a column.

A model can be tuned automatically, and
recursively, by using chosen measurements to
slowly adapt the chosen parameter so that the
residual between this measurement and the
model’s estimate is driven towards zero. Any
parameter estimation algorithm can be used, but
it is important that the parameter is changed
slowly, so that the short-term dynamic predic-
tions from the model are not disturbed by vig-
orous changes in parameters. A simple PID
controller is often a suitable tuning algorithm.
For example, a controller can be used to drive
the difference in observed andmodeled pressure
drop over a pipe section to zero bymanipulating
the friction factor on the pipeline. Similarly, a
temperature difference across a heat exchanger
can be used to tune the heat-transfer coefficient
in the exchanger. The estimated parameters are
useful indicators of the performance of the
equipment. An increase in friction factor or
decrease in heat-transfer coefficient can indicate
fouling or blockage of equipment.

6.3.5. Thermodynamics

A final challenge to on-line modeling lies in the
thermodynamic calculations of the model.
There are two challenges that need to be
addressed:

. The composition of thematerial to the process
may not be known or may not match the
current composition

. Thermodynamicmodels are empirical and are
by definition inaccurate and limited

The first problem arises because composition
analyses are slow, expensive, delayed, and in-
accurate. Consider a model of an oil and gas
production facility. The composition of the feed
to model is the composition of the oil, gas, and
water at the bottom of the oil well. This can only
be determined by well tests or samples taken
while drilling. These samples are taken infre-
quently. This means that an on-line model will
tend to lose accuracy over time if feed compo-
sition changes. In addition, the amounts of oil,
gas, and water and the density of each phase can
be measured by a multiphase flow meter in-
stalled on the well. These provide useful infor-
mation–but these meters often have low accu-
racy and poor reliability.

Fortunately, the available measurements
around an oil well (pressures, temperatures,
flows of each phase, and valve positions) can
be used to detect and compensate for uncertain-
ty in the fluid composition. For example, if a
well begins to produce water, while the model
assumes that there are only hydrocarbons in the
fluid, discrepancies will appear in the pressure
drop and temperature change over the well bore
and over the so-called choke valve at the top of
the well. These discrepancies can be used to
adjust the feed composition to avoidmodel drift.

The second problem–inherent inaccuracy of
thermodynamicmodels–can only be handled by
careful engineering work. An on-line model
provides a systematic tool by which engineers
are able to validate the accuracy of the chosen
thermodynamic methods and try out alternative
methods.

6.4. Pipeline Management and
Leak-Detection

The first example is a system for monitoring the
behavior of long gas or liquid pipelines. These
pipelines are used to transport crude oil, natural
gas, processed petroleum products, and water
over long distances. Complex networks of
pipelines are common and substantial energy
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is used to compress the gas or pump the liquid
through these pipelines. A long pipeline also has
substantial capacity. This means that, for exam-
ple, a natural gas utility can use a gas transmis-
sion line as a storage buffer. This requires
timely, accurate estimates of the amount of
material in the pipeline.

These pipeline networks are monitored and
controlled using a supervisory control and data
acquisition system (SCADA). Until recently,
with the advent of broadband communications,
these SCADA systems contained few measure-
ments and had a long sampling period. The
measurements available are usually pressure
and temperature at each end of a pipeline seg-
ment, valve positions, compressor or pump
status and flow rates at inlet, outlet, and custo-
dy-transfer points.

A pipeline management and leak detection
system [161] uses a dynamic simulation of a
pipeline or pipe network. This model is run in
synchronization with available SCADA mea-
surements, valve positions, and equipment sta-
tus. This information can then be used to:

. Calculate the inventory–the amount of mate-
rial–in the pipeline.

. Predict the speed and estimate the arrival time
of scrapers that are sent through the pipeline to
clean the pipe and inspect the integrity of the
pipeline.

. Track batches of fluid in petroleum product
transportation lines. The operator is warned
when a new batch for fluid is expected. They
can then prepare for the arrival of the new
material, minimizing the amount of off-spec
material.

. Monitor operations for dangerous conditions,
such as vacuum formation, liquid hammer and
high velocity (which can lead to erosion of the
pipe wall).

. Detect leakage and determine an approximate
location of the leak.

Model-based systems for monitoring single-
phase pipelines became commercially available
in the late 1990s. They are based on a one-
dimensional, distributed-parameter model of
the pipeline. Leakage is identified by detecting
a statistically-significant discrepancy between
the observed and modeled value of a chosen
pressure in a pipe segment. The calculated

pressure profile can then be examined, with a
sensitivity analysis, to determine the size and
location of the leak. This approach is statistical
and requires well-maintained and accurate pres-
sure and flow sensors to be effective. This is
often difficult in practice, and for this reason,
model-based leakage detection has fallen into
disfavor to be replaced by methods based on
empirical modeling or acoustic analysis of the
pipeline. However, for the other capabilities, a
simulation-based system remains the best
approach.

The best source for further information on
this area is the web site to the pipeline simula-
tion interest group [162].

6.5. Management of Multiphase and
Subsea Oil Production

A related application arose out of challenges
posed by deep-water off-sea oil production
during the 1990s. Prior to this time, off-shore
oil production had occurred on platforms that
were placed over production wells and were
often built standing on the sea bed. The oil, gas,
and water produced were separated on the plat-
form. Water was dumped to sea or reinjected
into the oilfield. Gas was flared or piped away
and oil was shipped in a pipeline or in a tanker.

As oil exploration moved into deeper water,
this type of production became too expensive.
New designs were needed, where the oil and gas
wells were placed on the sea bed, often many
kilometers from a floating production platform
or a processing facility on land. The production
facility received oil, gas, and water from many
wells. The long pipelines between the wells and
the platformhad to convey amultiphasemixture
or oil, gas, and water (Fig. 28). The behavior of
such mixtures is complex, posing challenges for
safe and effective operation. For example, at
low production rates, large amounts of liquid(L)
slugs can accumulate in the pipeline. This ac-
cumulation can continue until enough back
pressure has developed to force the liquid
through the line. This sudden rush of liquid can
overwhelm the capacity of the processing facil-
ity. Another problem can occur when pipelines
are run in cold conditions. At certain tempera-
tures and pressures, water can react with natural
gas to form hydrates, which are hard, ice-like
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solids. These will block the pipeline, stopping
production and requiring complicated, some-
times risky actions to be taken to unblock the
pipe. The pipe can also be blocked by hydrocar-
bon wax and heavy asphaltenes in the oil, high
production rates can lead to erosion of the pipe
wall, or high concentrations of salty water can
lead to corrosion of the pipeline.

In addition, measurements are usually only
available at the ends of the pipeline. Pressure
and temperature measurements are usually
available. Multiphase flow meters of various
types are used to measure flow, gas fraction,
and water cut (fraction of liquids as water).
These meters are under constant development,
but are inaccurate and difficult to maintain.

A specific discipline has developed within
petroleum engineering, called flow assurance,
which specializes in designing and operating
multiphase pipelines. Oil companies have in-
vested in experimental work and mathematical
modeling to develop specialized dynamic mod-
els of multiphase flow [156, 158]. These models
allow designers to size pipelines, design insula-
tion, size processing facilities, and specify
operating procedures so that slugging and
blockage problems can be avoided. However,

pipelines must be operated properly if slugging
and blockage is to be avoided. Inhibitors, such
as methanol or glycols can be injected to avoid
hydrate formation. Wells can be opened or
closed in a way that does not lead to slugging,
low fluid-temperatures or high water-concen-
trations. These operations are much easier if the
operator knows what is happening inside the
pipeline, rather than just what is happening at
either end. The operator needs to know the
temperature, pressure, flow, gas fraction, water
cut, and inhibitor concentration along the pipe-
line. This information is only available by run-
ning the multiphase model as an on-line
simulator.

Furthermore, proper operational decisions
can only be made if the multiphase flow is
simulated together with the production wells
and the part of the production facilities that
handles and separates the material coming out
of the multiphase pipelines. This is because
control actions in these parts of the process are
critical for ensuring proper behavior in the
pipeline.

Pioneering work is described in [163] for
the Troll Oseberg Gas Injection pipeline. This
work described the fundamental elements of an

Figure 28. A typical subsea development incorporating a long (37 km) multiphase pipeline (used with permission by ANNE

LISE TVEIT/Statoil ASA)
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on-line multiphase system: synchronization
with process data, a predictive model, a hierar-
chical decomposition of the model to allow
parallel computation, algorithms to detect leaks
and hydrate blockage, and algorithms to tune the
model.

A commercial application was developed for
the Troll gas multiphase pipeline to land in
1996, but the first large-scale commercial ap-
plication of a multiphase pipeline management
systemwas for a gas field in Egypt in 2001. This
application is described by [164]. The system
architecture for this system is shown in
Figure 29.

The system used the OLGA multiphase sim-
ulator to model the wells and subsea pipelines
and the D-SPICE dynamic simulator to provide
system integration and model the on-shore re-
ceiving facilities.

The system provided a dedicated operator
interface that allowed the operator to see both
measured data and predicted data. The example
screen in Figure 30 shows the screen used to
manage conditions around the slug catcher–the
vessel that handles large accumulations of hy-
drocarbon liquids in the pipeline.

This application successfully tracked opera-
tion after start up and has been expanded to
include all additional oil fields that have been
connected to the on-line facility later. Since this

time, a pipeline management system like this
has become standard equipment for subsea oil
and gas developments.

6.6. The On-Line Facility Simulator

Finally, experience gained in running pipeline
models on-line provided a basis for running an
entire production facility model on-line. This
work is described in [165]. In this project, a
simulator that had already been delivered to an
oil company as a training tool was run in syn-
chronization with the real facility’s control
system. The experience obtained from this
implementation is summarized in Section 6.3.

One of the main findings of this project is
that an on-line simulator is best exploited if it
generates results for use by off-line simulators.
These off-line simulators are used for engi-
neering and training. Valuable engineering
time can be saved if an on-line simulator can
be used to track actual process behavior. The
on-line simulator can then provide configura-
tion files for the off-line simulators so that they
represent actual process conditions. This re-
quires a way of archiving and securely distrib-
uting simulator configurations and relevant
process data. Tools from business computing
(service-oriented architecture, SOA) and

Figure 29. System architecture for a typical multiphase process monitoring system [164]
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document management (XML databases) can
be used for this purpose.

6.7. Conclusion and Future
Directions

On-line, dynamic process simulation is amature
technology for specific applications such as
pipeline leakage detection and flow assurance.
Use of large models for operations support and
process troubleshooting is less mature, but has
been proven in realistic applications.

Challenges that remain are related to improv-
ing the accuracy of the model and using the
model for optimization. Operational decisions
are always of the form ‘‘What should I do?’’
Unfortunately, process simulators only answer
this question indirectly. They actually answer
the question: ‘‘If you do this, what will

happen?’’ Direct answers to the ‘‘What should
I do?’’ question require optimization calcula-
tions. These types of calculations currently
require massive computer resources or simpli-
fied processmodels. This area therefore remains
a fruitful area for research and software devel-
opment. Much useful information about appli-
cations can be obtained from vendor web sites.
A useful review of the field is also given
by [166].
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84 S. Krämer, R.Gesthuisen: ‘‘Simultaneous estimation of the heat

of reaction and the heat transfer coefficient by calorimetry:

Estimation problems due to model simplification and high

jacket flow rates: Theoretical development’’, Chem. Eng. Sci.

60 (2005) 4233–4248.

85 P. Nomikos, J.F. MacGregor: ‘‘Monitoring batch processes

using multiway principal component analyses’’, AIChE J. 40

(1994) no. 8, 1361–1375.

86 K.A. Kosanovich: ‘‘Improved process understanding using

multiway principal component analysis’’, Ind. Eng. Chem. Res.

Am. Chem. Soc. 35 (1996) 138–146.

87 M.J. Piovoso, K.A. Hoo: ‘‘Multivariate statistics for process

control’’, IEEEControl SystemsMagazine 22 (2002) no. 5, 8–9.
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99 A. Wächter, L.T. Biegler: ‘‘On the implementation of an

interior-point filter line-search algorithm for large-scale non-

linear programming’’,Mathematical Programming 106 (2006)

25–57.

100 M. Diehl et al.: ‘‘Real-time optimization and nonlinear model

predictive control of processes governed by differential-alge-

braic equations’’, IFAC Symposium: Advanced Control of

Chemical Processes, Pisa 2000.

101 D.B. Leineweber et al.: ‘‘An efficient multiple shooting based

reduced sqp strategy for large-scale dynamic process optimi-

zation. Part 1: Theoretical aspects’’, Comp. Chem. Eng. 27

(2003) no. 2, 157–166.

102 A. Cruse et al.: ‘‘Batch process modeling and optimization’’, in

E. Korovessi A.A. Linninger (eds.): Batch Processes, Marcel

Dekker, New York 2005, pp. 305–380.

103 B. Srinivasan, D. Bonvin: ‘‘Interplay between identification and

optimization in run-to-run optimization schemes’’, Am. Con-

trol Conf., AACC, Anchorage 2002, pp. 2174–2179.

104 B. Srinivasan, S. Palanki, D. Bonvin: ‘‘Dynamic optimization

of batch processes. I. Characterization of the nominal solution’’,

Comp. Chem. Eng, 27 (2003) 1–26.

105 B. Srinivasan et al.: ‘‘Dynamic optimization of batch processes.

II. Role of measurements in handling uncertainty’’, Comp.

Chem. Eng. 27 (2003) 27–44.

106 E.D. Castillo, A.M. Hurwitz: ‘‘Run-to-run process control:

Literature review and extensions’’, J. Quality Technol. 29

(1997) 184–196.

107 P. Tatjewski: ‘‘Iterative optimizing set-point control-the basic

principle redesigned’’, 15th Triennial IFAC World Congress,

Barcelona 2002.

108 W. Gao, S. Engell: ‘‘Iterative set-point optimization of batch

chromatography’’, Comp. Chem. Eng. 29 (2005) 1401–1409.

109 B. Chachuat, B. Srinivasan, D. Bonvin: ‘‘Adaptation strategies

for realtime optimization’’,Comp.Chem. Eng. 33 (2009) 1557–

1567.

110 S. Engell et al.: ‘‘Continuous-discrete interactions in chemical

processing plants’’, IEEE Proceedings 88 (2000) 1050–1068.

111 S. Gass, T. Saaty: ‘‘Parametric objective function (part 1)’’, J.

Oper. Res. Soc. Am. 2 (1954) no. 3, 316–319.

112 S. Gass, T. Saaty: ‘‘Parametric objective function (part 2)’’, J.

Oper. Res. Soc. Am. 3 (1955) no. 4, 395–401.

113 T. Gal, J. Nedoma: ‘‘Multiparametric linear programming’’,

Management Science 18 (1972) no. 7, 406–422.

114 A.V. Fiacco: Introduction to Sensitivity and Stability Analysis

in Nonlinear Programming, Academic Press, NewYork 1983.

115 V. Bansal, J.D. Perkins, E.N. Pistikopoulos: ‘‘Flexibility anal-

ysis and design of linear systems by parametric programming’’,

AIChE J. 46 (2000) no. 2, 335, 2000.

116 E.N. Pistikopoulos: Parametric and stochastic programming

algorithms for process synthesis, design and optimization under

uncertainty, Aspen World, Boston, MA, 1997.

117 V. Dua, N.A. Bozinis, E.N. Pistikopoulos: ‘‘A multiparametric

programming approach for mixed-integer quadratic engineer-

ing problems’’, Comp. Chem. Eng. 26 (2002) 715–733.

118 E.N. Pistikopoulos et al.: ‘‘On-line optimization via off-line

optimization tools’’, Comp. Chem. Eng. 26 (2002) 175–185.

119 Y. Ohtake, N. Nishida: ‘‘A Branch-and-Bound algorithm for 0-

1 parametric Mixed-Integer programming’’, Operations Re-

search Letters 4 (1985) no. 1, 41–45.

120 A. Pertsinidis: On the parametric optimization of mathematical

programs with binary variables and its application in the

chemical engineering process synthesis, PhD thesis, Depart-

ment of Chemical Engineering, Carnegie-Mellon University,

Pittsburg 1992.

121 J. Acevedo, E.N. Pistikopoulos: ‘‘A multiparametric program-

ming approach for linear process engineering problems under

uncertainty’’, Ind. Eng. Chem. Res. 36 (1997) no. 3, 717–728.

122 V. Dua, E.N. Pistikopoulos: ‘‘An algorithm for the solution of

multiparametric mixed integer linear programming problems’’,

Annals of Operations Research 99 (2000) 123–139.

123 J. Acevedo, E.N. Pistikopoulos: ‘‘A parametricminlp algorithm

for process synthseis problems under uncertainty’’, Ind. Eng.

Chem. Res. 35 (1996) no. 1, 147.

124 V. Dua, E.N. Pistikopoulos: ‘‘Algorithms for the solution of

multiparametric mixed-integer nonlinear optimization pro-

blems’’ Ind. Eng. Chem. Res. 38 (1999) no. 10, 3976–3987.

125 V. Dua, K.P. Papalexandri, E.N. Pistikopoulos: ‘‘Global opti-

mization issues in multiparametric continuous and mixed-inte-

ger optimization problems’’, J. Global Optimization 30 (2004) ,

59–89.

126 V. Sakizlis, J. Perkins, E.N. Pistikopoulos: ‘‘An algorithm for

multiparametric dynamic optimization’’, ICOTA’01, Hong

Kong 2001.

127 E.N. Pistikopoulos, M. Georgiadis, V. Dua: Multiparametric

Programming: Theory, Algorithms and Applications, vol. 1,

Wiley-VCH Verlag, Weinheim 2007.

128 E.N. Pistikopoulos, M. Georgiadis, V. Dua: Multiparametric

Model-BasedControl: Theory and Applications, vol. 2,Wiley-

VCH Verlag, Weinheim 2007.

129 V. Sakizlis, J.D. Perkins, E.N. Pistikopoulos: ‘‘Explicit solu-

tions to optimal control problems for constrained continuous-

time linear systems’’, IEE Proceedings: Control Theory and

Applications 152 (2005) no. 4, 443–452a.

130 V. Sakizlis Et al.: ‘‘Design of robust model-based controllers

via parametric programming’’,Automatica 40 (2004) 189–201.

131 A. Bemporad, F. Borrelli, M. Morari: ‘‘Min-max control of

constrained uncertain discrete–time linear systems’’, IEEE

Trans. Aut. Con. 48 (2003) 1600–1606.

132 M. de la Pena et al.: ‘‘A dynamic programming approach for

determining the explicit solution of linear mpc controllers’’,

43rd IEEE Conference on Decision and Control 3 (2004)

2479–2484.

133 N. Faisca et al.: ‘‘A multi-parametric programming approach

for constrained dynamic programming problems’’, Optimiza-

tion Letters 2 (2008) 267–280.

134 A. Johansen: ‘‘On multiparametric nonlinear programming and

explicit nonlinear model predictive control’’, 41st IEEE

Process Systems Engineering, 5. Process Dynamics, Control, Monitoring, and Identification 59



Conference on Decision and Control, Las Vegas, Nevada,

USA, 2002.

135 A. Bemporad: ‘‘Multiparametric nonlinear integer program-

ming and explicit quantized optimal control’’, 42nd IEEE

Conference, Maui, Hawaii, Dec. 2003.

136 V. Sakizlis et al.: ‘‘Towards the design of parametric model

predictive controllers for non-linear constrained systems’’, inR.
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