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Abstract: 
The stunning varieties of cellular behavior rival that of any engineered system. 
Cellular systems are capable of energy transduction, organic synthesis, signal 
processing, and environmental s e n s i n g -  to name a few. They operate with 
energetic efficiency, at nanometer scales, and across a range of environmental 
conditions. Cellular functions such as cell growth, aerobic respiration, photosyn- 
thesis, and locomotion are governed by networks of interacting genes, proteins, 
and metabolites. A principal challenge in biology is to uncover the structure and 
dynamics of these networks, and connect these properties to biological functions. 
Such knowledge will enable advances in the development of medicines, microbes 
optimized for environmental remediation, and biologically derived energy sources. 
Here, we review recent approaches for the determination of the structure of genetic 
and biochemical networks regulating cellular function. 
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SYSTEMS BIOLOGY AND GENE 
REGULATORY NETWORKS 

The investigation of cells from a systems-level 
perspective is a relatively recent trend, enabled 
by parallel advances in computational and ex- 
perimental technology, such as high-throughput 
gene sequencing. For much of the last century, 
biologists have had a gene-centric view of living 
systems. The "one gene, one enzyme" doctrine, 
first proposed by Beadle and Tatum [1941], was 
gradually replaced by a "one gene, one function" 
view, where every gene is matched with a bio- 
logical function. However, the complete genomic 
sequences of model organisms, from microbes to 
mammals, have revealed that most organisms con- 
rain far fewer genes than had been expected. The 
implication is clear: the versatility of cellular sys- 

terns does not arise from single genes per se, but 
from networks of interacting genes. The emerging 
field of "systems biology" seeks to address this 
reality, with the aim of characterizing ensembles 
of genes and proteins, rather than single genes in 
isolation. 

Gene networks regulate much of a cell's internal 
activity, with many of the network's components 
having regulatory as opposed to structural (e.g. 
enzymatic or metabolic) roles. In the example of 
the DNA-damage response network in E. coli, tens 
of genes regulate the response of hundreds of genes 
involved in DNA repair and cell survival. The 
role of such networks is to integrate a variety of 
environmental stimuli and produce an appropriate 
response, in terms of the expression of structural 
genes required by the cell to survive. 
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Figure  1. A A gene regula tory  network consist ing of three 
genes, three proteins,  and a metabol i te .  Act ivat ion 
is represented with arrows, repression is represented 
wi th  bars. B A reduced model  of this network, 
consist ing only of indirect  gene interactions.  

Gene networks consist not only of genes but of 
proteins and small molecules called metabolites. 
Genes are "expressed" upon the directed synthesis 
of a protein encoded by their DNA, by way of an 
RNA intermediate. Proteins in turn possess most 
of the enzymatic, mechanical, electrical and other 
properties needed to execute cell functions. 

Gene, proteins, and metabolites regulate one an- 
other in myriad ways. Proteins bind to DNA at 
highly specific regions called cis-regulatory sites, 
and influence the expression of nearby genes. Pro- 
teins also act on one another directly, mediating 
the addition of catalytically important chemical 
groups, or combine to form multi-protein com- 
plexes, such as the those involved in gene ex- 
pression. Metabolites can also bind to proteins 
and alter their activity. Experimentally, it is of- 
ten difficult to determine the physical interactions 
underlying a regulatory relationship. In models 
of these networks, it is common to simplify and 
describe these interactions in terms of whether 
and how a gene inhibits or promotes the activity 
of another gene (Fig) .  

Identifying the structure of these regulatory net- 
works could impact diverse areas of technology 
including medicine, public health, bioprocess en- 
gineering, bioremediation, and renewable energy. 
Below, we survey some existing experimental and 
analytical approaches for network identification, 
and a few promising applications of this technol- 
ogy. 

MAPPING AND MODELING GENE 
REGULATORY NETWORKS 

Uncovering the structure and dynamics of gene 
networks involves both experimental observation 
and computational analysis. Two approaches are 
commonly taken: one measures the physical in- 
teractions in the network, the other measures 

changes in the output of the network under dif- 
ferent conditions, and infers the interactions. 

The "physical" approach measures the protein- 
protein or protein-DNA interactions in a network, 
capturing cells at a given time and condition, and 
identifying the components of these interactions 
through chemical assays. Although these assays 
tend to be fraught with false-positives and sys- 
tematic bias, they often represent the best form of 
direct evidence for a regulatory interaction. The 
downside of this approach is that it cannot tell 
us the functional nature of these interactions; we 
cannot know their strength or whether they are 
activating or inhibitory. 

The "inference" approach measures how the con- 
centration of gene products 1 change over a series 
of time-points or across conditions, and typically 
uses microarray technology 2 to measure gene 
expression. In this approach, the computational 
analysis plays a major role since interactions 
are inferred indirectly from experimental data. 
The recovered model is also indirect; it describes 
only the overall relationships between genes, but 
may not describe physical interactions(Fig B). 
Nonetheless, this approach has shown great po- 
tential of describing and predicting network func- 
tions. Moreover, due to the widespread availability 
of microarrays, this inference approach is growing 
in popularity and is the focus of our discussion 
below. 

Network Inference via Supervised Learning 

The strategies used for network inference in bi- 
ology often involve some form of parameter esti- 
mation. Such methods are alternately called sys- 
tern identification, machine learning, or super- 
vised learning. Here we will refer to them as su- 
pervised learning. In such an approach, a model 
structure is chosen to represent the genetic net- 
work based on multiple considerations, including 
the physical nature of interactions, prior informa- 
tion experimental constraints, and the type, qual- 
ity and quantity of data available. The parameters 
of the model are then estimated such that the 
model is able to best reproduce the experimental 
data collected. If the approach is successful, the 
estimated model may then be used to make pre- 
dictions about a network's function or behavior 

1 This  t e rm can refer to ei ther RNA intermedia tes  or 
proteins,  as bo th  are considered products  of a gene's 
expression. 
2 A microarray  consists of thousands  of chemical probes,  
each specific to a gene product ,  ar ranged on a silicon or 
glass subs t ra te  about  the size of a coin. They  allow one 
to measure  the expression (i.e., the concentra t ions  of gene 
products)  of thousands  of genes s imul taneously  in a single 
experiment .  



under untested conditions. These approaches are 
called "supervised" because the model is learned 
from a training data consisting of a set of system 
responses (e.g., RNA concentrations or protein 
activities) to a set of known inputs (e.g., pertur- 
bations to the expression of specific genes). 

Unsupervised learning approaches also have been 
widely applied to the analysis and inference of 
gene networks. In unsupervised learning, a struc- 
tured training data set is not available. Normally 
the data set consists of the network's expression 
responses to some inputs as measured by microar- 
rays, with the inputs being unknown. A variety 
of approaches have been applied to identify com- 
mon patterns in the expression of genes, includ- 
ing clustering [Pilpel et al., 2001] and principle 
component analysis. The clustering of expression 
data can be used to identify groups of genes that 
are coordinately regulated, as it assumed that the 
expression responses of these genes will be highly 
correlated. To be successful at identifying network 
features, unsupervised approaches must be sup- 
plied with more than just the expression response 
data. One such example is the incorporation of 
the DNA sequences near expressed genes, or cis- 
regulatory sites, and the proteins known to bind 
to these sequences[Bussemaker et al., 2001]. 

The application of supervised learning to gene 
networks, on the other hand, is more recent and 
the remainder of our review will focus on such 
methods. There are three principle challenges in 
applying supervised learning to gene network in- 
ference: (1) the selection of the model structure, 
(2) the fitness metric and computational search 
scheme used to estimate parameters, and (3) the 
design of experiments. The most important of 
these is the selection of the model structure, be- 
cause it influences choices for the other two chal- 
lenges and ultimately determines the utility of the 
approach in practical applications. 

It is often presumed that in order to understand 
cell function at a "system level", it is necessary 
to build expansive computational models that in- 
tegrate much of the nature of the physical details 
of gene, protein and metabolite interactions in a 
cellular network. But such a goal is probably un- 
realistic both computationally and experimentally 
- c e l l s  are too complex. Somehow, the physical 
interactions must be translated into a simplified 
model that still preserves system properties of the 
network. The model our group has chosen uses 
a linear approximation of network interactions 
which limits the number of required experiments, 
but retains valuable information on network struc- 
ture and behavior. A variety of other models of 
gene expression, each with advantages and disad- 
vantages, have been considered, but few models 
have been rigorously evaluated against experimen- 
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Figure 2. An idealized three-gene network, with regulatory 
interactions represented by edges. 

tal data. Thus, it remains an open question which 
models are most appropriate for which situations. 

Model Classes of Gene Networks 

Here we discuss three types of model classes: 
Boolean functions, Bayesian networks, and sys- 
terns of ordinary differential equations. Each 
model is illustrated using the simple gene network 
illustrated in Fig. 2. In each model, the states of 
the genes (e.g. the concentration or activity of 
gene products) are represented by the variables 
X1, X2, and X3. 

Boolean Models . In Boolean models, the state of 
each gene in the network as is represented as either 
"on" or "off", and is considered to be a (Boolean) 
function of the state of all other genes in the 
network. In our example network, might represent 
the behavior of gene 3 as a logical function of its 
two regulators, genes 1 and 2: 

X3 = X1 A X2 

If a Boolean model is assumed, inferring the net- 
work means identifying all of the logical functions 
which govern the behavior of each gene. Boolean 
models are valuable for applications where inter- 
mediate levels of gene expression are unimpor- 
rant [Kauffman, 1989]. Inference methods based 
on Boolean models have also been developed and 
analyzed, [Ideker et al., 2000] but few have been 
experimentally validated. 

Bayesian Network Models . Bayesian networks 
are used to model regulatory interactions between 
genes as probabilistic relationships. In such a net- 
work, the expression level each gene is represented 
as a continuous random variable. The probability 
density function (PDF)  for that random variable 
is assumed to be jointly dependent upon the con- 
centration of other genes in the network. In this 
framework, the task of reverse engineering the 
network is to identify two sets of parameters: the 
dependencies between variables (the edges in the 
network), and the nature of these dependencies. 
These parameters are typically learned from large 



data  sets, but occasionally some of these parame- 
ters may be supplied as prior information. In our 
example network of Fig.2, we would hope to dis- 
cover a joint probability density function showing 
that  X2 is dependent on X1, whereas X3 depends 
on both X1 and X2. To aid the estimation of these 
relationships, the joint probability is broken into 
the product  of conditional probabilities which are 
then estimated. In our three-gene network, this 
joint probability can be expressed as 

_p - IX )-p IX , 

Further simplifying assumptions, such as using 
discrete random variables with just two states 
(corresponding to a gene's being 'ON' or 'OFF'  
as in Boolean models), or limiting the number of 
edges in the network can simplify the inference 
task and reduce the requirements for experimental 
data. 

Bayesian models are well-suited to dealing with 
incomplete data  sets, and allow for the incor- 
poration of prior data  about a regulatory net- 
work's structure. The development of Bayesian 
inference methods for gene networks has received 
considerable at tention in recent years, and has 
been applied successfully to experimental expres- 
sion data  to identify regulatory links in gene 
networks[Segal et al., 2001]. However, one short- 
coming of Bayesian models it can be difficult to 
incorporate feedback, a property commonly found 
in gene networks. 

makes the challenge of identifying these functions, 
and recovering the network, more tractable. 

A variety of approaches may be applied to in- 
fer these interaction functions. One common ap- 
proach is to employ some form of multiple regres- 
sion. In particular, we have developed a method 
based on a linear model of the network and have 
used it to correctly infer a model of regulation 
in E. coli controlling DNA damage response and 
repair[Gardner et al., 2003]. Moreover, we showed 
this model could correctly predict regulatory fea- 
tures and behaviors of the network. These results 
are presented briefly. 

A 
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Ordinary Differential Equation Models . Sys- 
tems of ordinary differential equations present 
a natural  and semi-physical model for regula- 
tory gene networks. In this approach, the time- 
evolution of each gene's concentration is described 
as a function of all gene concentrations in the 
network. In this framework, inferring the network 
is a mat ter  of determining these functions. In our 
simple network of Fig. 2, a recovered model might 
describe the behavior of X2 and X3 as: 

dX1 

dt 
dX2 

dt 
dX3 

dt 

= K, (K - constant) (1) 

= (2) 

= (3) 

These functions may be linear[van Someren et al., 
2001, Liang et al., 1998] or non-linear[Weaver 
et al., 1999]. Gene networks have been observed 
to be sparse; that  is, most genes are regulated 
by a small fraction of the total set of genes in 
the network. Thus, the functions for each gene 
have relatively few input variables. This property 
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Figure 3. Overview of the NIR method. A: A structured 
set of perturbations is delivered to cells, such as the 
overexpression of one or more genes in each experi- 
ment. B: Gene expression (or, if possible, protein and 
metabolite activity) is measured for all genes in the 
network. C: This data set is analyzed by the NIR 
algorithm to infer a model of the perturbed network. 
D: The resulting model may then be used for analysis 
and prediction of network function. 



NETWORK INFERENCE VIA MULTIPLE 
REGRESSION (NIR) 

In our inference method, called Network Identifi- 
cation via multiple Regression (NIR) gene interac- 
tions are represented by a linear model. The rate 
of synthesis of RNA from each gene is represented 
as a weighted sum of the RNA concentrations 
of the other genes in the network. Training data 
are collected by overexpressing individual genes 
and then measuring the steady-state RNA levels 
of all genes in the network. The weights of the 
model are then learned using multiple regression 
analysis. Thus, the influence of each gene on each 
other gene (if any) is determined by the calculated 
weights. 

We tested the NIR method on the SOS network in 
E. coll. This network regulates the cell's response 
to DNA damage and involves more than 100 
genes. As the SOS network is well described in the 
literature, it serves as a good network for validat- 
ing the NIR method. As a starting point, we ap- 
plied the NIR method to a nine-gene subset at the 
core of the network. We used an extra copy of each 
gene to individually alter each gene's expression 
in nine separate experiments, and we measured 
the resulting changes in RNA concentrations. The 
NIR method was able to correctly identify 25 of 
the previously identified regulatory relationships 
between the nine genes, as well as 14 relationships 
that may be novel regulation pathways or possibly 
false positives (Fig.4). These results were obtained 
with a noise-to-signal ratio of approximately 68%. 
Moreover, the network model obtained by the NIR 
algorithm correctly identified the recA and the 
lexA genes, the known principal regulators of the 
SOS response, as having the strongest influence 
(largest regulatory weights) on the other genes in 
the network (Fig. 4C). Thus, the model can be 
used to suggest which genes should be perturbed 
to elicit a maximal response from the n e t w o r k -  
a capability of great value in optimizing bacteria 
for environmental remediation or bio-production 
of compounds. 

The network model obtained by the NIR algo- 
rithm was also used to identify the genes that 
mediate the network response to a particular stim- 
ulus. The model was applied to public data ob- 
rained using microarrays to assay the response of 
E. coli to various stimuli. As illustrated in Fig. 5, 
the network model correctly identifies the recA 
gene as the key mediator of the SOS network 
response to UV irradiation and treatment with 
the quinolone antibiotic pefloxacin (both cause 
DNA damage), but not to novobiocin treatment 
(a quinolone that does not cause DNA damage). 
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Figure  4. Inference of E. coli subne twork  using the  N I R  
me thod .  A:  P rev ious ly  known connect ions  of the  

nine-gene subne twork  of the  E. coli D N A  d a m a g e  
response  pathway.  B :  The  connect ions  identified by 
the N I R  me thod .  For  visual  clarity, s t r eng ths  and  di- 

rect ions of the identified connect ions  are not  labeled.  
C:  The  mode l  is used to calculate  the  m e a n  influence 

of each gene on express ion changes in the  o ther  genes. 
The  model  identifies recA and  lexA as the pr incipal  
r egu la to ry  nodes  in the network,  which is consis tent  

wi th  exis t ing knowledge.  
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Figure 5. Prediction of genes mediating response to three 
different stimuli. The network model identified by 
NIR was used to predict the mediators of expression 
responses following UV irradiation and treatment 
with two antibiotics. The expression data were ob- 
rained from public microarray data sets. In the case of 
UV irradiation and pefloxacin treatment,  both DNA- 
damaging, the recA gene is correctly predicted as the 
mediator of the expression response. For novobiocin, 
which does not damage DNA, recA is not predicted as 
the mediator of the expression response. Lines denote 
significance levels: P = 0.3 (dashed), P = 0.1 (solid). 

SIMPLIFYING COMPLEXITY 

The representation of a network or other system 
by a simplified model is sometimes called smooth- 
ing. In a sense, each interaction functions in the 
network can be represented as a surface (Fig. 2), 
and the details of the biochemistry are like bumps 
or wrinkles on the surface. Model simplifications 
ignore these bumps, but still capture the gen- 
eral shape and curvature of the surface. As the 
complexity (roughness) of a model representation 
increases (and hence its ability to describe the 
details), so does the amount of data needed to 
describe it. Thus, there is a trade-off between 
model scope and realism (complexity) and experi- 
mental/computational tractability. This trade-off 
is exaggerated in multivariate systems (which are 
the norm in biology). The amount of data needed 
increases exponentially with the number of dimen- 
sions in the system. This problem is sometimes 
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Figure 6. The quantitative relationship between the con- 
centration of a regulator gene and the expression of 
a regulated gene can be represented as a function 
surface f ,  e.g., the line, curve, and surface in panels 
A(1), A( i l )  and B. A small number of experimental 
points can fully define simple surfaces such as the 
line in panel A(1). (Data points in the figures repre- 
sent experimental measurements of the input /output  
relationship, which are noise-free for illustration pur- 
poses.) But a larger number of experimental points 
are needed to fully define more complex input /output  
relationships such as the curve in panel A( i l ) .  In 
panel A( i l ) ,  5 points are adequate to define relation- 
ship for a single-gene input, but for two inputs (B), 
5 2 _ 25 points are needed to sample the two-input 
surface as densely as the one-input surface. 

referred to as the curse of dimensionality and is 
illustrated in Fig. 2. To make the inference of 
high-dimensional systems tractable, we must use 
simplified models of input /output  relationships, 
such as a hyperplane or boolean function. How- 
ever, such approximations may limit the range of 
questions addressable by the model. 

The choice of model type and simplicity depends 
on several factors including the nature of the 
system being studied, the properties that are 
desired to be studied, and the type and amount 
of data that can be collected. This choice is the 
major challenge in applying statistical learning to 
gene networks. 

In developing our NIR method, for example, we 
selected a model able to capture network proper- 
ties of value in biomedical applications, namely 
the identification of the major network regula- 
tors and mediators of chemical and environmen- 
tal stresses. On the other hand, this model may 



not be appropriate for all behaviors observed in 
microorganisms such as the genetic interactions 
that orchestrate bacteriophage infection. Other 
models types of varying complexity may be better 
suited to such systems, including the Boolean and 
Bayesian models discussed here. We and other 
groups are currently exploring the feasibility and 
utility of such approaches. 

DRUGS, SLUDGE, AND BIO-BATTERIES: 
APPLICATIONS OF GENE NETWORK 

INFERENCE 

The elucidation of regulatory pathways in mi- 
crobes has potential applications for bioremedi- 
ation, the development and improvement of an- 
tibiotics, and renewable energy resources. 

Since 1972, when a strain of B.cepacia capable of 
degrading petroleum in oil spills was engineered 
by Chakrabarty [1972], the environmental uses 
of microbes have been explored. Bacteria have 
extraordinarily flexible respiratory mechanisms, 
possessing multiple and overlapping pathways for 
obtaining energy from compounds in their envi- 
ronment. These pathways govern the movement 
of electrons from high redox-potential molecules, 
such as sugars, to lower-potential molecules such 
as fumarate, oxygen, or metallic ions. In particu- 
lar, S. oneidensis's ability to reduce soluble heavy 
metals, such as Uranium(VI), to an insoluble form 
has made it a leading candidate for a role in the 
bioremediation of contaminated waste sitesLovley 
et al. [1991]. 

The versatility of S. oneidensis respiratory path- 
ways is conferred, in part, by extensive gene net- 
works regulating the concentrations of enzymes 
and other metabolic proteins. Examination of 
anaerobic growth conditions has shown many- 
fold increases in the rates of metal reduction and 
heightened expression of a number of electron 
transport genes, compared with aerobic condi- 
tions [Beliaev et al., 2002]. The pathways which S. 
oneidensis activates vary depending on the condi- 
tions under which it is grown; in the presence of 
oxygen, for example, S. oneidensis will not reduce 
Uranium(VI). The NIR method can be used to 
develop a model of the gene networks regulating 
these electron transport pathways, in particular 
those underlying (i) the transition from aerobic to 
anaerobic growth, and (ii) growth on various sub- 
strates, including environmental toxins. In combi- 
nation with models of bacterial metabolism, such 
a model could help to manipulate and optimize S. 
oneidensis for remediation use in the field. 

Network identification also has immediate utility 
in the development of improved antibiotics. Bacte- 
rial communities can exist on surfaces in the form 

of a biofilm, where cells are embedded in a matrix 
of dense, extracellular polysaccharides. Biofilms, 
such as those involved in gingivitis, cystic fibro- 
sis, and surgical implants, represent as many as 
60% of human infections and are notoriously dif- 
ficult to eradicate with antibiotic therapy. Cells 
in biofilms survive antibiotic doses several orders 
of magnitude higher than those sumcient to kill 
free-floating bacteria. This increased antibiotic re- 
sistance is not necessarily the result of genetic 
mutations. Cells removed from a biofilm are as 
susceptible to killing by antibiotics as their free- 
floating counterparts [Spoering and Lewis, 2001]. 
In some cases, this antibiotic tolerance is due to 
reduced diffusion of drugs into biofilms, but this is 
not true in general. For example, fluoroquinolone 
antibiotics, such as ofloxacin and ciprofloxacin, 
readily penetrate biofilms and kill most of the 
cells. Yet a small number of cells survive regardless 
of the concentration of antibiotic applied[Keren 
et al., 2004]. These cells are called persisters. Per- 
sisters are believed to repopulate a biofilm after 
discontinuation of antibiotic treatment, and thus 
cause recurrent infections. In addition, persistence 
in microorganisms may amplify the problem of 
genetically mediated resistance by giving cells the 
opportunity to develop advantageous mutations. 

The mechanisms of persistence are not well un- 
derstood. But it is likely a dynamic response of 
the cell, orchestrated by multiple stress response 
pathways. A better understanding of these stress 
response networks will be of great value in iden- 
tifying productive targets for novel anti-biofilm 
compounds with greater lethality and lower rate of 
resistance. As described above, the network model 
obtained with the NIR method can also be used 
to identify the genes that mediate the effects of 
a particular compound. Thus the network model 
will also be of great value in the optimization of 
candidate antibiotic compounds, and will enable 
the development of novel classes of drugs that 
account for and utilize the complex regulatory 
properties of gene networks. 

The rich array of metabolic processes which op- 
erate within microbes have several applications in 
renewable energy. Two strategies being pursued 
at present involve using microbes to generate an 
electric current directly and using microbes to 
produce pure hydrogen gas (which is then har- 
vested as an energy source). In both cases, the 
initial energy sources are readily-available carbo- 
hydrates, such as glucose or cellulose. 

The generation of a direct electric current with 
the recently isolated microbe R./erriredncens in- 
volves some of the very same respiratory pathways 
used in bioremediation. As its name implies, this 
bacterium has the capacity to transfer electrons 
onto Fe(III), reducing it to Fe(II) as part of its 



breakdown of glucose. Remarkably, it has been 
discovered to be able to transfer electrons directly 
onto an electrode. In a simple fuel-cell, comprised 
of anaerobic two-chambered vessel with the mi- 
crobe, glucose medium, and anode in one chamber 
separated by a cation-selective membrane from 
the cathode chamber, over 80% of the theoretic 
yield of electrons were transferred into current 
[Chaudhuri and Lovley, 2003]. A better under- 
standing of microbial respiratory networks may 
allow for this same ability of R. ferrireducens to be 
engineered into other, more well-studied microbes. 

The bacterial production of hydrogen gas is cat- 
alyzed by enzymes known as hydrogenases, which 
couple the production of hydrogen gas to the 
reduction of metabolites (usually NADH) gen- 
erated by the catabolic pathways of sugars. The 
theoretical stochiometric yield for these reactions 
would be 12 mols of/-/2 for every mol of glucose, 
and in yields approaching this have been achieved 
experimentally [Woodward et al., 2000]. However, 
a number of practical obstacles remain before this 
technology could be commercially applied, such 
as finding enzymes which are stable at higher 
temperatures (thereby improving the kinetics of 
the reactions). 

It is worth noting that C02 is a byproduct of these 
respiratory pathways, and hence might be thought 
to contribute to global warming as existing energy 
technologies do. However, microbes can reduce 
all of this C02 into sugars via photosynthetic 
pathways. Using microbes as vessels for carbon 
sequestration on a large-scale, to reset the balance 
of atmospheric gases, is itself a bioremediation 
application under investigation. 

FUTURE WORK 

Although a great deal of effort has been focused 
on the development of various modeling and infer- 
ence approaches, experimental evaluation of such 
schemes has been relatively limited to date. Rig- 
orous testing and refinement of these approaches 
is needed to better determine where, when and 
how to apply them. 

When inference methods have been tested, they 
have generally been applied only to RNA con- 
centration data, but such methods could just 
as easily be extended to proteins and metabo- 
lites. However, large-scale measurements of pro- 
tein concentrations, protein activity states, and 
metabolite concentrations are still difficult to ob- 
tain. Though still young, a variety of technolo- 
gies including mass-spectrometry, high-resolution 
electrophoresis, and protein arrays are showing 
increasing promise. As these technologies become 
better developed, it will be possible to use infer- 

ence algorithms to explore the dynamic and quan- 
titative properties of protein signaling cascades 
and metabolic networks. This capability will be 
of tremendous value in understanding the mech- 
anisms by which such networks mediate, distin- 
guish and integrate environmental signals in mi- 
crobes and higher organisms. For the present time, 
we expect that inference methods will continue 
to prove valuable in analyzing and predicting the 
behavior of gene regulatory networks. 
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