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Abstract— This paper addresses a fault detection and isola-
tion technique for differential flat systems. For such nonlinear
systems, it is possible to find a set of variables, named flat
outputs such that states and control inputs can be expressed
as functions of flat outputs and their derivatives. Flat systems
properties are used to detect and isolate faults and the non-
uniqueness property of the set of flat outputs is used for increase
the number of residues and improve the fault isolation, the
proposed approach will be applied on a classical three tank
system.

Index terms— Fault detection and isolation, Differential
flatness, Three tank system.

I. INTRODUCTION

In the past decade fault detection and isolation (FDI)

has experienced increasing attention because early detection

of faults, while the plant still operating in a controllable

region, can help to avoid abnormal event progression and

by consequence reduce productivity loss.

According with [1], the different fault detection and iso-

lation approaches can be organized in three main groups

of methods: quantitative model-based methods, qualitative

model-based methods (e.g.,causal models), and process his-

tory based methods (e.g.,neural networks).

This work is focused in quantitative model-based method

[2], specifically in analytical redundancy [3] and [4], mean-

ing that fault indicators (residues) are computed using the

actual and the expected (nominal, calculated based on the

fault free model) monitored signal. Fault identification is

performed by a decision algorithm.

Different methods have been used to compute this residual

signals, state estimation [5], parameter estimation [6] , and

parity space [7], among the many approaches reported in

the literature [8], only a few consider to take advantages

of the differential flatness [9]-[13], in most of the cases the

approach is applied to a linear system.

In [9] - [11] only fault detection is carried out, however in

[12] and [13] fault detection and identification is developed,

these approaches differ from ours in two principal points:

• In the proposed approach, at least two algebraically

independent flat vectors must be found in order to

increase the number of residues.
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• If the number of flat outputs is equal to the number of

algebraically independent flat vectors, faults affecting

flat outputs will always be isolated, regardless of the

plant.

By consequence of the first point, detection and isolation will

be more accurate and control reconfiguration will be faster

and easier.

This paper is organized as follows: differential flatness and

the trajectory generation method are presented in section two,

fault detection and isolation proposed approach is explained

in section three, section four presents the simulation results

in a classical three tank system obtained with our approach,

and, finally, the conclusion is presented in section five.

II. DIFFERENTIAL FLATNESS

Flatness concept initially introduced by Fliess et al. [14],

concern all linear controllable systems and a class of nonlin-

ear systems for whose dynamic behavior can be parametrized

by a set of variables, called flat outputs and a finite number

of its derivatives.

Let us consider the nonlinear system ẋ = f (x,u), x ∈ ℜn

the state vector, u∈ℜm the control vector and f a c∞ function

of x and u. The system is differentially flat if, and only if, it

exists a flat output vector z ∈ ℜm such as:

• The flat output vector its expressed as function of the

state x and the control input u and a finite number of

its time derivatives.

z = φz(x,u, u̇, ...,u
(γ)) (1)

• The state x and the control input u are expressed as

functions of the vector z and a finite number of its time

derivatives.

x = φx(z, ż, ...,z
(a)) (2)

u = φu(z, ż, ...,z
(a+1)) (3)

Where z(a) denotes the ath time derivative of z.

A. Trajectory generation by flatness

Trajectory generation for nonlinear systems is simplified

by using differential flatness property, because, it exists

a one-to-one correspondence between trajectories of flat

outputs and full state space and input trajectories [15]. Initial

and final conditions and path planning constraints can be

easily translate in term of flat outputs requirements, and then
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plan only the flat output trajectories (zre f ), in this way the

full state and control inputs path can be calculated using the

equations (2) and (3), in this work the reference flat output

vector is designed in a simple way by using a polynomial

interpolation approach.

Other efficient approaches can be found in [16] and [17].

III. FAULT DETECTION AND ISOLATION

The goal is to use differential flatness properties to develop

an FDI methodology, especially the non-uniqueness property

of the flat vector, in order to compute a larger number of

residues facilitating the fault detection and isolation task.

Our methodology is divided in two stages, first, n (n=state

dimension) residues are computed using one flat vector,

denoted zα . In a second stage another set of n residues is

computed by using a second flat vector, which at least one

element is not a simple algebraic combination of the previous

one, denoted zβ .

A. Residues set for a couple of flat output vectors

Let us consider a nonlinear flat model of dimension n, and

m control inputs, with zα as flat outputs, which corresponds

to m components of the state vector, also suppose that the

full state is measured, using the states and inputs calculated

from (2) and (3), it is always possible to compute n residues:

• n - m state residues, because the full state is supposed

to be measured.

• m control inputs residues.

The residual signals are computed by using

rix = xmi − xci (4)

riu = umi − uci (5)

where xmi and umi are the ith measured state and control

input respectively and xci and uci are the ith state and control

input calculated using the differentially flat equations.

Assuming that there is a second flat output vector zβ which

corresponds to m components of the state vector which at

least one element is not just an algebraic combination of zα

components, by consequence the number of residual signals

will be increased in n. A new set of n−m state residues and m

control input residues can be calculated in the same manner

as in (4) and (5), as a result n+ n residues are available.

For instance for a nonlinear system composed by four

states [x1 x2 x3 x4]
T ∈ n and two control inputs [u1 u2]

T ∈

m and by consequence two flat outputs, for example

[zα1 zα2]
T = [x1 x2]

T ∈ m, four residuals can be obtained

by using the set of differentially flat equations φαx and

φαu, using these residues, faults affecting flat outputs can be

detected but cannot be isolated, faults appearing on input or

state sensors are or are not isolated depending on the specific

system.

Assuming that an algebraically independent flat vector

exists, for instance [zβ 1 zβ 2]
T = [x3 x4]

T ∈ m, then it is

possible to generate eight residues as depicted in Fig.1.

By this way the fault isolation procedure is simplified, the

residual signals are obtained as follows.
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Fig. 1. Fault detection scheme
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T (e4)
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(6)

Where ek ∈R
4, ek(i) = 0, ∀i 6= k,ek(i) = 1 ⇔ i = k and ck ∈

R
2, ck( j) = 0, ∀ j 6= k,ek( j) = 1 ⇔ j = k.

If all the elements of zα and zβ are algebraically indepen-

dent every single sensor fault (input or state) can be detected

and isolated, if one or more flat output is not algebraically

independent, fault isolation depends on the system equations,

see section IV.

B. Derivatives estimation

Our approach needs fast and accurate time derivative

estimation in order to compute all the φ functions. In this

work a high-gain observer [18] is used to evaluate the time

derivative of noisy signals.

In order to improve the performance of the high-gain ob-

server, a low-pass filter is synthesized, the filter order is fixed

regarding the maximal derivative used in the differentially
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flat equations, hence a better noise filtering is obtained. Let

us define the equation of the high-gain observer

ˆ̇x = Âx̂+ B̂u (7)

Where

Â =















−ζ1/ε 1 ... ... 0

−ζ2/ε2 0 1 ... 0
...

...
. . .

. . .
...

−ζn−1/εn−1 ... ... 0 1

−ζn/εn ... ... ... 0















(8)

and

B̂ =
[

−ζ1/ε − ζ2/ε2 . . . − ζn−1/εn−1 − ζn/εn
]T

(9)

The polynomial Sn+ζ1Sn−1+ ...+ζn−1S+ζn is Hurwitz and

ε << 0. The transfer function from u to x̂ when ε ⇒ 0 is

T (s) = [1 S ... Sn−2 Sn−1]T , the system acts as a differentiator

under the consideration that the input u is continuous and

derivable. In this case the n − 1 derivatives are obtained

directly from the state vector.

A possible selection of the coefficients ζi(i = 1, · · ·n) is

in such a way that the frequency bandwidth of the signal

to be derivated is in the frequency bandwidth of the filter

1/(Sn + ζ1Sn−1 + · · ·+ ζn−1S+ ζn) and the ε small enough.

IV. EXAMPLE: THREE TANK SYSTEM

A. Nonlinear state space model

The detection and isolation technique is applied in a

classical three tank system, see Fig. 2 , the system equations

are expressed as follows:

Sẋ1 = −Q10(x1)−Q13(x1,x3)+Q1 (10)

Sẋ2 = −Q20(x2)+Q32(x2,x3)+Q2 (11)

Sẋ3 = Q13(x1,x3)−Q32(x2,x3)−Q30(x3) (12)

Where S is the transverse section of the tanks, xi, i = 1,2,3,

Qi0, i = 1,2,3 the outflow between each tank and the central

reservoir, Q13 and Q32 are the outflow between tank 1 and

tank 3 and the outflow between tanks 3 and 2 respectively,

Q1 and Q2 are the incoming flows of each pump.

The valves connecting tanks one and three with the central

reservoir are considered closed, so Q10 and Q30 are always

equals to zero. The flows Q13, Q32 and Q20 can be expressed

as follows: [19]

Q13(x1,x3) = az1Sn

√

2g(x1 − x3) (13)

Q20(x2) = az2Sn

√

2g(x2) (14)

Q32(x2,x3) = az3Sn

√

2g(x3 − x2) (15)

where Sn represents the transverse section of the pipes

connecting the tanks and az j, j = 1,2,3 represents the flow

coefficients.

Fig. 2. Three Tank schema

B. Flat model

The flat model is computed by defining x1 and x3 as flat

outputs, zα = [x1 x3]
T , so the differentially flat equations can

be writen as follows:

xα
1 = zα1 (16)

xα
2 = zα2 −

1

2g

(

az1Sn

√

2g(zα1 − zα2)− Sżα2

az3Sn

)2

(17)

xα
3 = zα2 (18)

Qα
1 = Sżα1 + az1Sn

√

2g(zα1 − zα2) (19)

Qα
2 = Sẋα

2 − az3Sn

√

2g(zα2 − xα
2 )+ az2Sn

√

2gxα
2 (20)

φαx(zα1,zα2) =
[

xα
1 xα

2 xα
3

]T
(21)

φαu(zα1,zα2) =
[

Qα
1 Qα

2

]T
(22)

As mentioned above the flat vector for this system, it’s
not unique, so, it is possible to use zβ = [x2 x3]

T in order to
compute another set of differentially flat equations.

x
β
1 = zβ2 +

1

2g





az3Sn

√

2g(zβ2 − zβ1)+S ˙zβ2

az1Sn





2

(23)

x
β
2 = zβ1 (24)

x
β
3 = zβ2 (25)

Q
β
1 = Sẋ

β
1 +az1Sn

√

2g(x
β
1 − zβ2) (26)

Q
β
2 = Sżβ1 −az3Sn

√

2g(zβ2 − zβ1)+az2Sn

√

2gzβ1 (27)

φβ x(zβ 1,zβ 2) =
[

x
β
1 x

β
2 x

β
3

]T

(28)

φβ u(zβ 1,zβ 2) =
[

Q
β
1 Q

β
2

]T

(29)
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C. Simulation results

The reference trajectories of flat outputs were calculated

using a fifth order polynomial, this generation method facil-

itate the tuning of initial and final conditions, white noise is

added to the measured outputs with a relevant level to the

real process measure level.

Flow coefficients az1 and az3 are equal to 0.75, az2 value

is 0.76, the transverse section of the tanks and the transverse

section of the connecting pipes are 15.4∗10−3 and 5∗10−5

respectively.

Five different multiplicative sensor faults are analyzed,

three state faults and two input sensor faults. Once the

failure occurs (at 250s), it is persistent until the end of

the simulation, for simplicity sake only one single fault is

presented at a time, actuators are considered fault-free at

any time.

The detection threshold was defined by changing the flow

parameters in the range of +/− 10%, then, the maximal

value for each residue (positive and negative) in addition

with an error margin is used as the final amplitude of the

detection threshold. This margin adds robustness and avoids

false alarms.

Once the threshold is passed the fault is considered de-

tected.

D. Fault detection and isolation

1) Case A: n residues: Using equations (21) and (22) n
residues are computed as follows:




r1x

r1u

r2u



=





h2

Q1

Q2



−





φαx(zα1, żα1,zα2, żα2)
T [0 1 0]T

φαu(zα1, żα1,zα2, żα2)
T [1 0]T

φαu(zα1, żα1,zα2, żα2)
T [0 1]T



 (30)

Faults non-affecting flat outputs are detected and isolated

by simply testing the amplitude of residues, (see Fig.3 to

5). If the fault appears in a flat output (x1 or x3), the fault

is detected, but it is not possible to isolate it by a simple

comparison between the residual signal and the respective

threshold, because all the residues are triggered. Fig. 6 and

7.
2) Case B: n+ n residues: Using a second set of differ-

entially flat equations n+ n residues could be computed as
follows:
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φαx(zα1, żα1,zα2, żα2)
T [0 1 0]T

φαu(zα1, żα1,zα2, żα2)
T [1 0]T

φαu(zα1, żα1,zα2, żα2)
T [0 1]T
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T [1 0]T

φβu(zβ1, żβ1,zβ2, żβ2)
T [0 1]T

















(31)

In this case every single fault is detected and isolated,

because each fault generates a different residual pattern, see

Fig. 8 to 12 and table I.

E. Results discussion

As expected, a fault appearing in water level sensor x2, is

detected and isolated in both cases, this behavior is explained

by the dependence between residues exceeding the detection

threshold and the measure of h2. See (31).

Fig. 3. Case A: 20% loss h2 water level sensor

Fig. 4. Case A: 20% loss Q1 input sensor
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Fig. 6. Case A: 20% loss h1 water level sensor

Fig. 7. Case A: 20% loss h3 water level sensor

Fig. 8. Case B 20% loss h1 water level sensor

Fig. 9. Case B 20% loss h2 water level sensor

Fig. 10. Case B 20% loss h3 water level sensor

Fig. 11. Case B 20% loss Q1 input sensor
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Fig. 12. Case B 20% loss Q2 input sensor

When the fault affects a flat output, Fig. 6, 7, 8 and

10, it is isolated only in the case B, this is explained by

the fact that in the case A, all the residues are constructed

using h1 and h3 as flat outputs and by consequence if one

of the measures is defective it will be reflected in every

residual signal, nonetheless in the case B, two residues does

not depend of h1, by consequence they are not affected by

this fault, if the fault is presented in h3 all residues will be

affected in both cases, however in the second case this is the

only framework where all residues are triggered.

Faults appearing on inputs Q1 and Q2 have the same

comportment of h2, see table I

TABLE I

RESIDUES MATRIX

Fault r1x r1u r2u r2x r3u r4u

Case A

Fh1 1 1 1 - - -
Fh2 1 0 0 - - -
Fh3 1 1 1 - - -
FQ1 0 1 0 - - -
FQ2 0 0 1 - - -

Case B

Fh1 1 1 1 1 0 0
Fh2 1 0 0 1 1 1
Fh3 1 1 1 1 1 1
FQ1 0 1 0 0 1 0
FQ2 0 0 1 0 0 1

V. CONCLUSIONS

This work presents a new approach to detect and isolate

faults, by using differential flatness. The method was suc-

cessfully applied in a classical three tank system, since, even

in the presence of noise, every single fault is detected and

isolated.

This method was tested in the specific case where the flat

outputs are simply elements inside the state vector. Even

if this characteristic is shown by many systems, this is not

the only possibility, as explained in section two, flat outputs

could be functions of inputs and states, so future work will

be focus on extending our fault detection approach to a more

complex case.

Regarding control reconfiguration, redundant signals can

be used on reconfiguration purpose.
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