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Abstract: The precision of the raster scan motion of piezoelectric tube scanners, e.g. in scanning probe
microscopy, is degraded by structural vibrations excited by the driving voltage signals. In order to
eliminate these vibrations, a model–based, flatness–based feedforward control scheme is proposed that
tracks the tip of the piezoelectric tube along the desired scan trajectory in the lateral plane. This scheme
is derived from a modal analysis of the tube scanner dynamics which is obtained by finite element
(FE) discretization. In order to achieve robustness of the trajectory tracking performance with respect to
model errors or unknown external disturbances, the feedforward control is supplemented by a feedback
controller in a two–degree–of–freedom design which feeds back the measured displacements at the
top of the scanner. The feedback additionally compensates for the coupling between the two scanning
directions, e.g. due to tube eccentricity. The control performance is investigated in simulations where the
sample mass attached to the top of the tube, which represents the most realistic model error, is varied.
Various simulation results demonstrate the achieved improvements in tracking accuracy by the proposed
control over conventional approaches.

Keywords: Feedforward control; Finite element analysis; Distributed parameter systems; Mechanical
systems; Tracking applications.

1. INTRODUCTION

Piezoelectric tubes were used for nanopositioning and nanofab-
rication applications by Binning and Smith (1986) for the first
time. They feature three–dimensional displacement with high
resolution and are thus the predominant scanner design in scan-
ning probe microscopy (Sun and Wolkow (2006)). However, the
scan accuracy as well as the scan speed are limited due to the
excitation of the low-frequency resonances of the piezoelectric
tube by the driving voltages. Several approaches for vibra-
tion suppression have been investigated, including feedforward
control (Li and Bechhoefer (2007)), feedback control (Schitter
et al. (2004)), and piezoelectric shunt damping (Fleming and
Moheimani (2006)).
The piezoelectric scanner depicted in Fig. 1 consists of a thin-
walled cylindrical tube of radially polarized piezoceramic ma-
terial and is mechanically clamped at the lower end. The inner
surface of the tube is coated by a grounded electrode, and
four evenly spaced quartered electrodes are deposited on the
outer diameter representing the potential or actuator electrodes
driven by external voltages. The driving voltages +ux and −ux

of equal magnitude but opposite sign are applied to the cor-
responding pair of x+– and x−–electrodes centered above the
x–axis in the twin-electrode excitation mode. Respectively, the
voltages +uy and −uy are the inputs to the y–axis electrodes.
Application of the driving voltages causes a bending motion
of the tube along the directions of the potential differences,

generating the displacements wx and wy at the free end of the
tube.
To exploit the apriori knowledge of the two-dimensional raster
scan motion in the lateral xy-plane, a feedforward control
scheme for trajectory tracking is applied to the piezoscanner.
Together with the feedback controller, the feedforward tracking
leads to a two-degree-of-freedom control of the piezoscanner.
The feedfoward approach developed by Becker and Meurer
(2007) is based on a combination of modal analysis and dif-
ferential flatness. Finite Element Analysis (FEA) is applied for
the derivation of the underlying modal representation of the
piezoscanner dynamics. To take advantage of the high accu-
racy and detailed geometrical modeling of the FEA, the model
accounts for a sample mass attached to the top of the tube (see
Fig. 1). Furthermore, the coupling effects between the motion in
x- and y-direction (Tien et al. (2005)), stemming e.g. from tube
eccentricity due to machining tolerances (El Rifai and Youcef-
Toumi (2001)), are included in the FE-model for simulation
in order to demonstrate the compensation performance of the
feedback control.

2. FINITE-ELEMENT MODEL OF THE PIEZOELECTRIC
TUBE SCANNER

Suitable models are needed for the proposed model–based con-
trol design. In (Carr (1988)), the modeling of piezoelectric tube
scanners by FEA is restricted to static analysis. This static
approach is extended by Sun and Wolkow (2006) to a tube

Proceedings of the 17th World Congress
The International Federation of Automatic Control
Seoul, Korea, July 6-11, 2008

978-1-1234-7890-2/08/$20.00 © 2008 IFAC 8257 10.3182/20080706-5-KR-1001.1787



Fig. 1. Electrode circuitry for a piezotube in twin–electrode
excitation mode and FE model of tube assembly.

assembly taking the sample holder into account. In (Maess et al.
(2007)), a dynamic analysis of the piezoelectric tube is carried
out and is generalized to the tube assembly in the following
making use of finite–element (FE) discretization and a modal
reduction approach.
The direct and indirect piezoelectric effects couple the struc-
tural and piezoelectric domains as described by the constitutive
equations in stress–charge representation

T = cES− eE

D = eS + εSE,

where T denotes the mechanical stress matrix, S the mechanical
strain matrix, E the electric field vector, D the electric charge
vector per unit area, ce the mechanical stiffness matrix at con-
stant electric field, εS the permittivity matrix under constant
strain, and e the piezoelectric matrix.
For the FE discretization, the mechanical and electrical fields
as unknown quantities are approximated by polynomial ansatz
functions parameterized by the unknown nodal displacements
θ(t) and nodal electric potentials φ(t).
The obtained coupled structural dynamics applying the piezo-
electric constitutive law of the piezoelectric structure can be
formulated as

[

Mss 0
0 0

][

θ̈(t)
φ̈(t)

]

+

[

Kss Ksφ

KT
sφ Kφφ

][

θ(t)
φ(t)

]

=

[

f (t)
q(t)

]

. (1)

Hereby, the right hand side is given by the external forces f and
the external electric charge q. The mass and stiffness matrices
of the structure are Mss and Kss, whereas the matrix Ksφ

couples the electric field and structural displacements in the
piezoelectric material.

2.1 Piezoelectric actuation as system inputs

Electrical voltages are applied across potential electrodes and
a common grounded electrode for actuation. To incorporate
these system inputs into the model, the vector of the electrical
potential degrees of freedom (DOFs) φ is partitioned into
potentials of the potential electrodes φ p, grounded electrodes

φ g and interior nodes φ i. Then, the structural dynamics can be

written as (Becker et al. (2006))
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Now the grounded potential DOFs are set to zero, φg = 0,
and the inner potential degrees of freedom (DOFs) φ i are
eliminated, which yields

[

Mss 0
0 0

][

θ̈
φ̈

]

+

[

Hss Hsφ

HT
sφ Hφφ

][

θ
φ p

]

=

[

f
qp

]

, (2)

with the following submatrices

Hss = Kss −KsiK
−1
ii KT

si (3)

Hsp = Ksp −KsiK
−1
ii Kip (4)

Hpp = Kpp −KT
ipK−1

ii Kip. (5)

The piezoelectric tube possess metal electrodes at its surface,
on which the equal electrical potential condition must hold, i.e.
all nodal electrical potentials are identical.
Finally, if the patch is driven as an actuator, it directly follows

Mssθ̈ +Hssθ = −Hspφe + f (6)

where one (scalar) potential φe for each actuator patch remains.
The external forces f denote disturbances of the controlled sys-
tem that are unknown to the control and therefore omitted in the
following control design. For the investigated twin–electrode
configuration and two–dimensional lateral scan motion, the
input voltages applied to two opposite patch electrodes with
different signs are combined to one system input according to
Fig. 1, which gives a system with two inputs

M θ̈(t)+K θ(t) = βu(t), (7)

with symmetric mass and stiffness matrices M = Mss,K = Hss

and the input matrix β = −Hsp.
The two physical controlled output variables w(t) are given
by the output matrix Γ as a linear combination of the nodal
displacements,

w(t) = Γθ(t). (8)

2.2 Modal transformation and modal truncation

For modal transformation, the transformation θ(t) = Φ x(t)
is applied to the system in physical coordinates. The columns
of the transformation matrix Φ are given by the eigenvectors
ϕk obtained from the solution of the generalized eigenvalue
problem

(

K −ω2M
)

ϕ = 0. (9)

Exemplarily, the mode shape of the first eigenvector ϕ1 is

shown in Fig. 1. Left–multiplication of (7) with ΦT yields a
decoupled set of differential equations

ẍ(t)+Ωx(t) = b u(t) (10)

with the spectral matrix Ω = diag
[

ω2
1 ,ω2

2 , . . . ,ω2
N

]

and the

transformed input vector b = ΦTβ = [b1,b2, . . . ,bN ]T. By re-
stricting the transformation matrix Φ to the first m ≪ N low–
frequency eigenvectors, the system order can be efficiently re-
duced. The necessary number m ≪ N of retained modes de-
pends on the considered structure and the frequency bandwidth
of the input u(t) required to realize a desired transition. If highly
dynamic motion is desired, m has to be chosen larger in order to
accurately approximate the system behavior. For the piezotube,
a residual mode or a feedthrough-term, which is frequently used
to compensate the unmodeled dynamics of the truncated modes,
shows no significant contribution to the position of the zeros
in the reduced system for m ≥ 3 retained modes and is thus
neglected.
Finally, the controlled variable defined by (8) is given with
respect to the modal states by w(t) = Cx(t), where C = ΓΦ
denotes the transformed output vector.
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3. FEEDFORWARD CONTROL DESIGN

The feedforward control design is conducted for each scan
direction separately exploiting that the dynamics of the x–
and y– direction can be assumed to be completely decoupled
as verified in Fig. 4. For that purpose, subsystems are built
describing the input/output–dynamics of the x or y-direction.
The obtained systems then read

ẍk +ω2
k xk = bkul, wl =

m

∑
k=1

ckxk (11)

for each scan direction l ∈ {x,y}. Note that due to the rotational
symmetry, the bending modes obtained from the FE discretiza-
tion can always be rotated such that they are solely excited by
the input voltage of one scan direction.
A flatness–based inversion procedure as outlined in Fig. 2 is
proposed that uses input and state parameterizations in terms of
a so–called flat output as a parameterizing variable to derive a
control command ul(t) that makes the piezoscanner tip follow a
desired rest–to–rest motion between given initial and final sta-
tionary values w∗

0 and w∗
T. The proposed model-based approach

offers fast computation of the control command, because no
iterative solution is necessary. Furthermore, input shaping tech-
niques possess minimum transition times of half of the period
of the lowest mode and yield step inputs which are not well
suited for amplifiers and any additional feedback control. It
has been shown in simulations that the minimal transition time
for the flatness–based approach is only limited by the wave
propagation time between system input and output. Thus, both
of these limitations of other feedforward control techniques are
overcome by the proposed approach.

3.1 Flatness–based inversion procedure

Roughly speaking, the notion of differential flatness states that
any system state and system input can be expressed in terms of a
parameterizing flat output and its time–derivatives up to certain
order (see Fliess et al. (1995) for the notion of differential
flatness and Rudolph and Woittennek (2002); Becker et al.
(2006a) and references herein for use of this notion for control
of flexible structures). Starting from the modal representations
(11), it can be shown that the modal representation is flat with
respect to a flat output y(t), given by

y(t) =
m

∑
k=1

ω2
k

bk

m

∏
j=1, j 6=k

(

1−
ω2

k

ω2
j

)xk(t).

This variable and its derivatives parameterize the modal states
xk(t), k ≥ 1 and the system input v(t) according to,

xk(t) =
bk

ω2
k

Dk
x(s){y(t)}

∣

∣

∣

s j=
d j

dt j , j∈ 0

(12)

with Dk
x(s) =

N

∏
j=1, j 6=k

(

1+
s2

ω2
j

)

,

u(t) = Du(s){y(t)}
∣

∣

∣

s j=
d j

dt j , j∈ 0

(13)

with Du(s) =
m

∏
j=1

(

1+
s2

ω2
j

)

.

Hereby the operator s denotes differentiation in the time domain
and m is the subsystem order of the previous section. Singular-
ities of (12) and (13) are avoided because non–controllable and

Linear

Plant

Feedforward

ControlGenerator

Trajectory
w∗

l (T )

w∗
l (0)

u∗ly∗l wl

Fig. 2. Flatness-based feedforward control design procedure for
one subsystem describing the dynamics of the direction
l ∈ {x,y} (the asterisk denotes desired trajectories).

non–observable modes are not incorporated in the subsystem
models.
It is important to note that in general the flat output obeys no
direct physical interpretation but serves only as a calculation
variable in the feedforward control design procedure outlined in
Fig. 2. If the considered flexible structures are analytically mod-
elled and thus described by partial differential equations, the
parameterizations become infinite series (Becker and Meurer
(2007)).

3.2 Motion planning

For evaluation of the derived parameterizations (12) and (13),
an appropriate trajectory y∗(t) must be planned for the flat
output that realizes the transition between stationary initial and
final values y∗0 and y∗T ,

y∗(t) = y∗0 +(y∗T − y∗0)Ψσ ,T (t), Ψσ ,T (t) ∈ [0,1], (14)

where the initial and final values y∗0 and y∗T are determined from
the static solution of (10) and the desired (physical output)
stationary values w∗

0 and w∗
T . The trajectory (14) is inserted

into (13) to obtain the feedforward control u∗(t) that makes the
physical output w(t) follow the smooth trajectory w∗(t) from
the initial to the desired final values, w∗

l (0) and w∗
l (T ) within

the transition time–interval t ∈ [0,T ].
Obviously, the convergence of these series is guaranteed if
the modal representation is of finite dimension as in (10). For
infinite–dimensional systems however, convergence is a neces-
sary condition in order to perform truncation of the series (12),
(13). This in turn implies that the trajectories must be smooth
functions. Additionally, its time derivatives must be zero for
t < 0 and t > T in order to realize the desired transition between
stationary states, which results in non–analytic functions at the
two points t = {0,T}, see Becker and Meurer (2007) for details
on convergence analysis.
As an advantage of this design approach, the control input and
state trajectories can be iteratively replanned in order to meet
certain control performance criteria, e.g. actuator saturation.

3.3 Realization of the scan trajectory

The trajectory of the rectangular raster scan motion in the xy–
plane consists of a staircase x–displacement and a triangular
y–displacement. This scan pattern poses additional challenge to
the trajectory tracking compared to the motion conventionally
investigated, where the displacement normal to the triangular
portion is generated by a slowly increasing ramp voltage of
constant slope (Abramovitch et al. (2007)). Following the ap-
proach of Perez et al. (2004), the scan trajectory is divided into
two parts: the transition section and the tracking section with
active scan time Ta. For the scan trajectory, rest–to–rest motion
is desired in x-direction. The input parameters to the trajectory
generator in Fig. 3 are the initial displacement w∗

x(0) and the
final displacement w∗

x(T ) after the step.
In the fast scanning direction, constant velocity is needed dur-
ing the scan process with velocity reversals for every new x-
coordinate. Exploiting the system linearity, the triangular scan
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Fig. 3. Block diagram of the feedforward control scheme (solid
lines) and the feedback control scheme (dashed–dotted
lines) for two–degree–of–freedom tracking control.

motion is generated by prescribing a smooth step as velocity
output trajectory ẇ∗(t) instead of a displacement w∗(t) by (14).
Consequently, the parameterization (13) yields the input signal
derivative v̇(t), which is integrated once to obtain the desired
input voltage for the fast scanning direction y. Hence, the inputs
to the system generator are the desired initial and final velocities
ẇ∗

y(0) and ẇ∗
y(T ).

4. SIMULATION OF TRAJECTORY TRACKING

The FE model of the piezoelectric tube scanner is based on the
twin–electrode excitation mode in Fig. 1. The control loop with
feedforward and feedback components is illustrated in Fig. 3.
To account for realistic uncertainties of the piezotube, a test
model is built, in which the weight of the sample mass attached
to the tip is varied to achieve a change of the eigenfrequencies
in the order of 1%–2% compared to the nominal model, and a
tube eccentricity of 30 µm in x-and y-direction is introduced to
amplify the coupling between x– and y–motion. For this test
model, the robustness of the trajectory tracking is enhanced
by means of the two–degree–of–freedom design, where the
feedback loop with the dashed–dotted lines in Fig. 3 is added
to the feedforward control scheme. The obtained displacements
wx and wy are compared with the desired trajectories w∗

x and
w∗

y. The tracking errors ex and ey are fed into two SISO
controllers. The electrode input voltages are then composed of
the controller portion uc

x and the feedback portion u∗x for x–
displacement, and of uc

y and u∗y for y–motion, respectively.
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Fig. 4. x-displacement and y-displacement frequency response
of the piezoelectric tube for x-electrode excitation.

4.1 Nominal and test model

The magnitudes of the frequency response functions from the
x–electrode driving voltage +ux to the displacement outputs
wx and wy are shown in Fig. 4 for the nominal model of the
tube assembly and the test model. The coupling between x–
axis excitation and y–axis motion is weak in the nominal case,
illustrated by the approximately 40 dB lower amplitude of wy

in comparison to wx. This observation justifies the disregard of
coupling effects in the feedforward design and the implemen-
tation of SISO controllers for the MIMO system in the two–
degree–of–freedom approach. The x-displacement response of
the test model is almost identical to the nominal case, while
tube eccentricity increases the coupling to the y-displacement
by approximately 10 dB in the low–frequency limit. Further-
more, Fig. 4 demonstrates that the displacement responses are
dominated by a resonance at 850 Hz. Due to the tube symme-
try, the displacement responses from y–electrode excitation are
identical to the x–electrode excitation and need not to be shown.

4.2 Feedforward control of the nominal model

In the following simulations, the scan frequency is set to 250 Hz
for the triangular trajectory in y-direction, which is typically re-
ferred to as the fast scanning direction. This value corresponds
to more than 1/4th of the first resonance frequency. Note that
the scanning frequency is typically limited to approximately
1/100th of the first resonance frequency to avoid the excitation
of structural vibrations (Aphale et al. (2007)). Steps along the
x-direction are performed every 2 ms at each reversal point of
the triangular trajectory.
The feedforward control is calculated according to Sec. 3 for a
subsystem order m = 3 for which convergent behavior of the
series has been proven, i.e. increasing the order m does not
change the obtained feedforward control. Fig. 5 shows u∗x and
u∗y, and the uncompensated voltages uu

x and uu
y obtained from the

desired displacement trajectories w∗
x and w∗

y by division with the
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Fig. 5. Input voltages of potential electrodes (top: x–electrode;
bottom: y–electrode).
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Fig. 6. Feedforward control of the nominal piezotube model
(top: x–displacement; bottom: y–displacement).

static gain of the transfer function from x–electrode excitation
to x–displacement of Fig. 4. It can be seen that minimization
of the resonances of the tube scanner is achieved in the feed-
forward scheme by modifying the shape of the input voltages
during the transition time. To this end, oscillatory components
are added to the driving signals to compensate the structural
vibrations. Both signals, the uncompensated and the feedfor-
ward driving voltages, are well below the limit of piezoelectric
voltage saturation. Especially, the amplitude of the feedforward
voltage is in the same order as the uncompensated one, meaning
that feedforward control does not negatively affect the scan
range of the piezotube.
In the simulations, the uncompensated input voltages and the
feedforward control commands are applied to the nominal
piezoelectric tube scanner system, i.e. the model parameters for
the control design and in the simulation model are identical.
The obtained displacements wx and wy are shown in Fig. 6 in
comparison with the reference trajectories. In the uncompen-
sated case, the output displacements strongly deviate from the
desired trajectory due to the excitation of structural vibrations
in the piezotube. The oscillation is dominated by the first reso-
nance of the piezoscanner. In contrast, the output displacements
almost perfectly track the reference trajectory for the feedfor-
ward control. The small deviations observed in the feedforward
scheme are due to the neglected cross–coupling terms in the
generation of the input voltages u∗x and u∗y. The feedforward
scheme thus enables fast and accurate scanning for the nominal
model.

4.3 Two–degree–of–freedom control of the test model

In the context of trajectory tracking in atomic force microscopy
applications, two–degree–of–freedom control was applied to
piezoelectric actuators by Leang and Devasia (2002) to sepa-
rately treat the suppression of hysteresis and creep by feedback
control, and the compensation of induced vibrations by feed-
forward control. Schitter et al. (2003) used a two–degree–of–
freedom control approach to increase the scan speed of piezo-
electric tube scanners in z–direction.
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Fig. 7. Two–degree–of–freedom control of the test model(top:
x–displacement; bottom: y–displacement).

In the present approach, the feedback loop is designed to
achieve robust trajectory tracking in the xy–plane. Two identical
SISO PI controllers are designed for the x– and y–motion dy-
namics. They feed back the corresponding displacement signals
as depicted in Fig. 3 and possess a bandwith above the first
resonance frequency of the scanner assembly.
Fig. 7 demonstrates the improvement in scan accuracy for the
two–degree–of–freedom control scheme in comparison to the
feedforward approach in the simulation of the test model. Due
to the variation of the eigenfrequencies, the responses obtained
from the modal-based feedforward controller of Sec. 3.1 sig-
nificantly deviate from the prescribed reference trajectories,
oscillatory components are visible in Fig. 7(a) and Fig. 7(b).
Furthermore, the stronger coupling of x and y-dynamics lead to
a linearly increasing steady–state error as observed in Fig. 7(a)
as the deviation between the reference step trajectory and the
feedforward step response. On the other hand, the feedback
loop in the two–degree–of–freedom design compensates for
the feedforward tracking error such that accurate scanning is
always achieved. It is thus robust against variations in the eigen-
frequencies of the tube scanner assembly as well as increased
coupling between the x– and y– directions.
Simultaneously, the control effort uc

x and uc
y remains low since

the main contribution to the electrode driving voltages ux and
uy is still supplied from the feedforward portions u∗x and u∗x
as illustrated in Fig. 8. The compensation of the dynamics–
coupling errors is observed as a slight triangular shape in the
feedback component uc

y of the y–electrode driving voltage and

accordingly small steps in uc
x.

The raster scan trajectories in the xy-plane are shown in Fig. 9
obtained by the simulations with the piezotube test model with
eccentrity and changed tip mass. The strong deviations in the
feedforward–control raster scan are apparent. It is furthermore
observed that the optimal scan trajectory approaches a circular
shape during the transition time, resulting in a simultaneous
smooth transfer at the reversal points of the triangular motion
and the steps of the staircase displacement. Again, the two–
degree–of–freedom design tracks the reference trajectory with
high accuracy.
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5. CONCLUSIONS

A two–degree–of–freedom control scheme is proposed for the
tracking of prescribed scan trajectories in the lateral xy–plane
with piezoelectric tube scanners, that are used in atomic force
microscopy for relative positioning of the sample and the probe.
A FE model of the tube scanner is used to determine the driving
voltages of the potential electrodes by means of a flatness–
based feedforward control scheme. Simulation results demon-
strate the high accuracy of the obtained feedforward control.
In two–degree–of–freedom control, SISO PI-controllers are de-
signed to ensure robustness in closed–loop operation by means
of displacement feedback to achieve exact asymptotic tracking
under uncertainties that may be introduced by tube eccentricity
and variations of the sample mass. Simulations with a modi-
fied model that significantly deviates from the nominal design
model verify the good tracking performance of the proposed
control approach.
Currently, the use of induced voltages at sensor electrodes in
single–electrode excitation mode as feedback signals to avoid
the need for additional displacement sensors in closed–loop
operation of piezoelectric tubes is under investigation. Further-

more, the control of three–dimensional scanning applications is
analyzed, focusing on the compensation of the coupling from
the lateral scan motion into the normal z–direction which is
significantly stronger in single–electrode excitation compared
to twin electrode excitation.
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